On the liquid-phase technology of carbon fiber/aluminum matrix composites

Sergei Galyshev , Andrew Gomzin , Rida Gallyamova , Igor Khodos , Fanil Musin

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (12) : 1578 -1584.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (12) : 1578 -1584. DOI: 10.1007/s12613-019-1877-7
Article

On the liquid-phase technology of carbon fiber/aluminum matrix composites

Author information +
History +
PDF

Abstract

The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’ surface. This paper aims to solve these problems. The theoretical and experimental dependence of porosity on the applied pressure were determined. The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown. The correlation among the strength of the carbon fiber reinforced aluminum matrix composite, the fracture surface, and the degradation of the carbon fiber surface was discussed.

Keywords

carbon fiber/aluminum matrix composite / liquid-phase fabrication / infiltration pressure / composite porosity / composite wire / ultrasonic

Cite this article

Download citation ▾
Sergei Galyshev, Andrew Gomzin, Rida Gallyamova, Igor Khodos, Fanil Musin. On the liquid-phase technology of carbon fiber/aluminum matrix composites. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(12): 1578-1584 DOI:10.1007/s12613-019-1877-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meng X, Choi Y, Matsugi K, Xu ZF, Liu WC. Microstructures of carbon fiber and hybrid carbon fiber-carbon nanofiber reinforced aluminum matrix composites by low pressure infiltration process and their properties. Mater. Trans., 2018, 59(12): 1935.

[2]

Deshpandea M, Gondila R, Waikara R, Murtyb SVSN, Mahatac TS. Processing and characterization of carbon fiber reinforced aluminium7075. Mater. Today Proc., 2018, 5(2): 7115.

[3]

Xiong JT, Zhang H, Peng Y, Li JL, Zhang FS. Fabrication and characterization of plasma-sprayed carbon- fiber-reinforced aluminum composites. J. Therm. Spray Technol., 2018, 27(4): 727.

[4]

Chernyshova TA, Kobeleva LI, Shebo P, Panfilov AV. Interaction of Metallic Melts with Reinforcing Fillers, 1993, Moscow, Nauka, 272

[5]

Lancin MH V-S M, Marhic C, Valle R, Raviart JL, Daux JC, Rabinovitch M. On the role of brittle interfacial phases on the mechanical properties of carbon fibre reinforced Al-based matrix composites. Mater. Sci. Eng. A, 1999, 272(2): 321.

[6]

Mortensen A, Masur LJ, Cornie JA, Flemings MC. Infiltration of fibrous preforms by a pure metal: Part I. Theory. Metall. Trans. A, 1989, 20(11): 2535.

[7]

Michaud VJ, Compton LM, Mortensen A. Capillarity in isothermal infiltration of alumina fiber preforms with aluminum. Metall. Mater. Trans. A, 1994, 25(10): 2145.

[8]

Masur LJ, Mortensen A, Cornie JA, Flemings MC. Infiltration of fibrous preforms by a pure metal: Part II. Experiment. Metall. Trans. A, 1989, 20(11): 2549.

[9]

Brooks RJ, Corey AT. Hydraulic properties of porous media, 1964, Fort Collins, Colorado State University, 37

[10]

Gude M, Boczkowska A. Textile Reinforced Carbon Fibre/aluminium Matrix Composites for Lightweight Applications, 2014, Cracow, Foundry Research Institute, 235

[11]

Tzanakis I, Xu WW, Eskin DG, Lee PD, Kotsovinos N. In situ observation and analysis of ultrasonic capillary effect in molten aluminium. Ultrason. Sonochem., 2015, 27, 72.

[12]

Matsunaga T, Ogata K, Hatayama T, Shinozaki K, Yoshida M. Infiltration mechanism of molten aluminum alloys into bundle of carbon fibers using ultrasonic infiltration method. J. Jpn. Inst. Light Met., 2006, 56(4): 226.

[13]

Kudryashovaa OB, Eskinb DG, Khrustalyov AP, Vorozhtsov SA. Ultrasonic effect on the penetration of the metallic melt into submicron particles and their agglomerates. Russ. J. Non-Ferrous Met., 2017, 58(4): 427.

[14]

Matsunaga T, Ogata K, Hatayama T, Shinozaki K, Yoshida M. Effect of acoustic cavitation on ease of infiltration of molten aluminum alloys into carbon fiber bundles using ultrasonic infiltration method. Composites Part A, 2007, 38(3): 771.

[15]

Matsunaga T, Ogata K, Hatayama T, Shinozaki K, Yoshida M. Fabrication of continuous carbon fiber-reinforced aluminum magnesium alloy composite wires using ultrasonic infiltration method. Composites Part A, 2007, 38(8): 1902.

[16]

Matsunaga T, Matsuda K, Hatayama T, Shinozaki K, Amanuma S, Jin P, Yoshida M. Development in manufacturing of carbon fiber reinforced aluminum preform wires using ultrasonic infiltration method. J. Jpn. Inst. Light Met., 2006, 56(1): 28.

[17]

Mileiko ST. Metal and Ceramic Based Composite, 1997, Amsterdam, Elsevier, 690

[18]

Li SL, Qi LH, Zhang T, Zhou JM, Li HJ. Microstructure and tensile behavior of 2D-Cf/AZ91D composites fabricated by liquid solid extrusion and vacuum pressure infiltration. J. Mater. Sci. Technol., 2017, 33(6): 541.

[19]

Li SL, Zhang L Q T, Ju LY, Li HJ. Interfacial microstructure and mechanical properties of Cf/AZ91D composites with TiO2 and PyC fiber coatings. Micron, 2017, 101, 170.

[20]

Wang X, Jiang DM, Wu GH, Li B, Li PZ. Effect of Mg content on the mechanical gproperties and microstructure of Grf/Al composite. Mater. Sci. Eng. A, 2008, 497(1-2): 31.

[21]

Zhang YH, Wu GH. Comparative study on the interface and mechanical properties of T700/Al and M40/Al composites. Rare Met., 2010, 29(1): 102.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/