Effect of particle gradation characteristics on yield stress of cemented paste backfill

Hai-yong Cheng , Shun-chuan Wu , Xiao-qiang Zhang , Ai-xiang Wu

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (1) : 10 -17.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (1) : 10 -17. DOI: 10.1007/s12613-019-1865-y
Article

Effect of particle gradation characteristics on yield stress of cemented paste backfill

Author information +
History +
PDF

Abstract

Along with slurry concentration and particle density, particle size distribution (PSD) of tailings also exerts a significant influence on the yield stress of cemented paste, a non-Newtonian fluid. In this work, a paste stability coefficient (PSC) was proposed to characterize paste gradation and better reveal its connection to yield stress. This coefficient was proved beneficial to the construction of a unified rheological model, applicable to different materials in different mines, so as to promote the application of rheology in the pipeline transportation of paste. From the results, yield stress showed an exponential growth with increasing PSC, which reflected the proportion of solid particle concentration to the packing density of granular media in a unit volume of slurry, and could represent the properties of both slurry and granular media. It was found that slurry of low PSC contained extensive pores, generally around 20 μm, encouraging free flow of water, constituting a relatively low yield stress. In contrast, slurry of high PSC had a compact and quite stable honeycomb structure, with pore sizes generally < 5 μm, causing the paste to overcome a higher yield stress to flow.

Keywords

paste backfill / grading theory / yield stress / paste stability coefficient / microscale

Cite this article

Download citation ▾
Hai-yong Cheng, Shun-chuan Wu, Xiao-qiang Zhang, Ai-xiang Wu. Effect of particle gradation characteristics on yield stress of cemented paste backfill. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(1): 10-17 DOI:10.1007/s12613-019-1865-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H.Y. Cheng, S.C. Wu, H. Li, and X.Q. Zhang, Influence of time and temperature on rheology and flow performance of cemented paste backfill, Constr. Build. Mater., 231(2020).

[2]

E Y, M F. Paste Tailings Management, 2017, Switzerland, Springer International Publishing, 7

[3]

H.Z J, S.F W, A.X W, H.M S, J.D W C p o N-a G s a c s. Int. J. Miner. Metall. Mater., 2019, 26, 1594

[4]

W S, H.J W, K.P H. Control of waste rock-tailings paste backfill for active mining subsidence areas. J Clean Prod., 2018, 171, 567

[5]

E Y, M B, B B, S P. Influence of disposal configurations on hydrogeological behaviour of sulphidic paste tailings: A field experimental study. Int. J. Miner. Process., 2014, 131, 12

[6]

D W, M F, S.J C. Coupling temperature, cement hydration and rheological behaviour of fresh cemented paste backfill. Miner. Eng., 2013, 42, 76

[7]

A T, E.K Y. A review of binders used in cemented paste tailings for underground and surface disposal practices. J. Environ. Manage., 2013, 131, 138

[8]

B F, O P, N R. Effect of surfactants on the yield stress of cement paste. Cem. Concr. Res., 2017, 100, 32

[9]

J.L G, A F. Using the flume test for yield stress measurement of thickened tailings. Miner. Eng., 2015, 81, 116

[10]

L P, L G, M R, R H. High concentration suspension pumping. Miner. Eng, 2006, 19, 471

[11]

J.J A, J H, Y M. Measurement of yield stress of cement pastes using the direct shear test. J. Non-Newton. Fluid, 2014, 214, 18

[12]

S.C. Wu, L.Q. Han, Z.Q. Cheng, X.Q. Zhang, and H.Y. Cheng, Study on the limit equilibrium slice method considering characteristics of inter-slice normal forces distribution: the improved Spencer method, Environ. Earth Sci., 78(2019), No.20, art. No. 611.

[13]

H.Y. Cheng, S.C. Wu, X.Q. Zhang, and J.H. Li, A novel prediction model of strength of paste backfill prepared from waste-unclassified tailings, Adv. Mater. Sci. Eng., 2019 (2019), art. No. 3574190.

[14]

Y Q, S K. Use of creep recovery protocol to measure static yield stress and structural rebuilding of fresh cement pastes. Cem. Concr. Res., 2016, 90, 73

[15]

D S, M G. Apparent yield stress measurement in cemented paste backfill. Int. J. Min. Reclam. Env., 2013, 27, 231

[16]

M B, G Y, B N, M H, D D, J.P F. A rheological investigation of the behaviour of two Southern African platinum ores. Miner. Eng., 2013, 49, 92

[17]

S.H Y, A.X W, K.J H, Y W, Y.K Z. The effect of solid components on the rheological and mechanical properties of cemented paste backfill. Miner. Eng., 2012, 35, 61

[18]

A P, T L, H K, C B, J H, N R. Yield stress and bleeding of fresh cement pastes. Cem. Concr. Res., 2012, 42, 937

[19]

J.G H, K.J W. Influence of bleeding on properties and microstructure of fresh and hydrated Portland cement paste. Constr. Build. Mater, 2016, 115, 240

[20]

S C, E Y, W.D S. Evaluation of viscosity, strength and microstructural properties of cemented tailings backfill. Minerals, 2018, 8, 352

[21]

L Y, E Y, J.W L, H L, H.Q J. Effect of superplasticizer type and dosage on fluidity and strength behavior of cemented tailings backfill with different solid contents. Constr. Build. Mater., 2018, 187, 290

[22]

M.M M, E E, A S. Coupled influence of content, gradation and shape characteristics of silts on static liquefaction of loose silty sands. Soil Dyn. Earthquake Eng., 2017, 101, 12

[23]

A K, E Y, B E, I A, M Y, B O. Laboratory testing of cemented paste backfill. Madencilik, 2002, 41, 11

[24]

M.M M, E E, A S. Influence of coefficient of uniformity and base sand gradation on static liquefaction of loose sands with silt. Soil Dyn. Earthquake Eng., 2016, 89, 185

[25]

X K, H.B H, M Z, Y W, X Z. Effect of particle gradation on properties of fresh and hardened cemented paste backfill. Constr. Build. Mater, 2015, 96, 378

[26]

M F, M B, S O. Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill. Miner. Eng., 2005, 18, 41

[27]

A.P S, A.M S, D.G P, L.A O, T.C D. Effect of particle size distribution and calcium aluminate cement on the rheological behaviour of all-alumina refractory castables. Powder Technol, 2012, 226, 107

[28]

C.F F, K.H O, R H. The influence of mineral admixtures on the rheology of cement paste and concrete. Cem. Concr. Res., 2001, 31, 245

[29]

Y.Q G, T.S Z, J.X W, Q.J Y, S.X O. Evaluating the distance between particles in fresh cement paste based on the yield stress and particle size. Constr. Build. Mater, 2017, 142, 109

[30]

J M, L V, V M, C.F I, A M-F. Slurry rheology prediction based on hyperspectral characterization models for minerals quantification. Miner. Eng., 2017, 109, 126

[31]

A K, R S N, G.G Q, van J.S.J D, J.L P. Modelling the yield stress of ternary cement-slag-fly ash pastes based on particle size distribution. Powder Technol., 2014, 266, 203

[32]

L P, D.V B, F S. Hydraulic Mneral Waste Transport and Storage. Annu. Rev. Fluid Mech., 2018, 50, 157

[33]

P L, F.H R, M.F C, Q.F G, H.F W, K L. Investigating the mechanical and acoustic emission characteristics of brittle failure around a circular opening under uniaxial loading. Int. J. Miner. Metall. Mater, 2019, 26, 1217

[34]

X Z, A F, C.C Q. An analytical solution for evaluating the safety of an exposed face in a paste backfill stope incorporating the arching phenomenon. Int. J. Miner. Metall. Mater, 2019, 26, 1206

[35]

Y.Y T, X Y, D E, L.H X, W.D S. Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading. Int. J. Miner. Metall. Mater, 2019, 26, 404-416.

[36]

W S, A.X W, K.P H, Y Y, L L, Y.M W. Experimental study on the microstructure evolution of mixed disposal paste in surface subsidence areas. Minerals, 2016, 6, 43

[37]

J.W P, D.H D, Z.Q L, Q Y, T Y. Rheological models for fresh cement asphalt paste. Constr Build. Mater., 2014, 71, 254

[38]

J A, K.H K. Assessment of thixotropy of self-consolidating concrete and concrete-equivalent-mortar—Effect of binder composition and content. Aci. Mater. J., 2004, 101, 400

[39]

J.J A, K.H K. Effect of viscosity-enhancing admixtures on formwork pressure and thixotropy of self-consolidating concrete. Aci. Mater. J., 2006, 103, 280

[40]

Z A, M F. Sulphate induced changes in the reactivity of cemented tailings backfill. Int. J. Miner. Process., 2017, 166, 13

[41]

M M, R A, A W A, S.J L. SEM and ESEM techniques used for analysis of asphalt binder and mixture: A state of the art review. Constr. Build. Mater, 2018, 186, 313

[42]

J.E W. Rheological properties of cement paste: Thixotropic behavior and structural breakdown. Cem. Concr. Res., 2009, 39, 14

[43]

M F, D A, J.C C, M P, M T. Saturated hydraulic conductivity of cemented paste backfill. Miner. Eng, 2009, 22, 1307

[44]

C.C Q, L L, J.Y H, Q.S C, L.J Y, P.F L. Understanding cement hydration of cemented paste backfill: DFT study of water adsorption on tricalcium silicate (111) surface. Minerals, 2019, 9, 202

[45]

C.C Q, A F, Q.S C, P.F L. Application of first-principles theory in ferrite phases of cemented paste backfill. Miner. Eng, 2019, 133, 47

[46]

C.C Q, X.L T, X.J D, Q.S C, A F, E.Y L. Towards intelligent mining for backfill: A genetic programming-based method for strength forecasting of cemented paste backfill. Miner. Eng., 2019, 133, 69

[47]

X L, W Z, X.H D, X.Y S, B.Y L, M L. Ensemble learning regression for estimating unconfined compressive strength of cemented paste backfill. IEEE Access, 2019, 7, 1

[48]

D.R K, K S T T, K F, Y T. Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry. Int. J. Multiphase Flow, 2005, 31, 809

[49]

I M, K.H K. Effect of particle-size distribution and specific surface area of different binder systems on packing density and flow characteristics of cement paste. Cem. Concr. Compos., 2017, 78, 120

[50]

C W, D H, Q.X L, Z.H X. Current state of fine mineral tailings treatment: A critical review on theory and practice. Miner. Eng., 2014, 58, 113

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/