Kinetics and mechanism of natural wolframite interactions with sodium carbonate

Evgeniy Nikolaevich Selivanov , Kirill Vladimirovich Pikulin , Lyudmila Ivanovna Galkova , Roza Iosifovna Gulyaeva , Sofia Aleksandrovna Petrova

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (11) : 1364 -1371.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (11) : 1364 -1371. DOI: 10.1007/s12613-019-1857-y
Article

Kinetics and mechanism of natural wolframite interactions with sodium carbonate

Author information +
History +
PDF

Abstract

The kinetics and mechanism of natural wolframite interactions with sodium carbonate during air heating were studied. X-ray phase and X-ray microanalysis were used to establish that the initial monocrystalline wolframite consists of Fe0.5Mn0.5WO4 and Fe0.3Mn0.7WO4. Differential thermal analysis showed that the interaction of wolframite with sodium carbonate begins above 450°C with the formation of tungstate, sodium ferrite, iron oxides, and manganese. Model experiments on sintering with the subsequent removal of water- soluble compounds (leaching) tracked the change in the structure of wolframite. The atomic ratio of Fe/Mn in wolframite does not change up to 600°C, and subsequently decreases to 0.2 during heating, which allows the mechanism of the process to be identified and indicates the greater reactivity of wolframites with an increased proportion of iron. Thermal analysis with data processing using non-isothermal kinetics established that the interaction of wolframite with sodium carbonate in an air stream proceeds via a two-stage mechanism, wherein the first stage is limited by diffusion (activation energy, E = 243 kJ/mol) and the second stage is limited by autocatalysis (activation energy, E = 212 kJ/mol) due to the formation of a Na2WO4–Na2CO3 eutectic.

Keywords

wolframite / structure / sodium carbonate / sintering / thermal analysis / kinetics

Cite this article

Download citation ▾
Evgeniy Nikolaevich Selivanov, Kirill Vladimirovich Pikulin, Lyudmila Ivanovna Galkova, Roza Iosifovna Gulyaeva, Sofia Aleksandrovna Petrova. Kinetics and mechanism of natural wolframite interactions with sodium carbonate. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(11): 1364-1371 DOI:10.1007/s12613-019-1857-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lassner E, Schubert WD. Tungsten: Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds, 1999, New York, Springer

[2]

Trassorass JRL, Wolfe TA, Knabl W, Venezia C, Lemus R, Lassner E, Schubert WD, Lüderitz E, Wolf H. Tungsten, Tungsten Alloys, and Tungsten Compounds, 2016, Weinheim, Wiley-VCH

[3]

Yang WZ, Wang W, Wu XC, Yang KJ, Li QK, He JL. Co-extraction of tungsten and molybdenum from refractory scheelite–powellite blend concentrates by roasting with Na2CO3 and SiO2 and leaching with water. Can. Metall. Q., 2018, 57, 447.

[4]

Dimitrijević VL, Dimitrijević MD, Milanović D. Recovery of tungsten from low-grade scheelite concentrate by soda ash roast-leach method. J. Min. Metall. Sect. A, 2004, 40, 75.

[5]

Palant AA, Bryukvin VA, Tovtin AV. Extracting tungsten from wolframite-processing waste. Russ. Metall., 1999 23

[6]

Şirin B, Açma E, Arslan C, Addemir O. The effect of sulphur on tungsten recovery from scheelite concentrates by alkali fusion. Can. Metall. Q., 1994, 33, 313.

[7]

Srinivas K, Sreenivas T, Natarajan R, Padmanabhan NPH. Studies on the recovery of tungsten from a composite wolframite–scheelite concentrate. Hydrometallurgy, 2000, 58, 43.

[8]

Paulino JF, Afonso JC, Mantovano JL, Vianna CA, da Cunha JWSD. Recovery of tungsten by liquid–liquid extraction from a wolframite concentrate after fusion with sodium hydroxide. Hydrometallurgy, 2012, 127, 121.

[9]

Pikulin KV, Selivanov EN, Galkova LI, Gulyaeva RI. Features of tungsten extraction from spent catalysts of petroleum organic synthesis. Tsvetn. Met., 2017 31

[10]

Butuhanov VL, Hromtsova EV. Physical–Chemical Basics of Complex Application of Mineral Tungsten Ore, 2015, Khabarovsk, Pacific Ocean State University

[11]

Hanturgaeva GI. The combined technologies of complex processing of difficult-to-enrich molybdenum and tungstic ores. Min. Inf. Anal. Bull. Sci. Technol. J., 2009, 14, 478

[12]

Ayushieva BS, Zoltoev EV. Kinetic features of the sintering process for hubnerite concentrate with sodium sulfate. Min. Inf. Anal. Bull. Sci. Technol. J., 2012 125

[13]

Shurdumov GK, Cherkesov ZA, Makaeva LI. Effect of mass transfer of systems Mn(Fe,Co)Mo(W)OOin4U−Na2CO3 and environment and need for his account when identifying molybdates and tungstates of multivalent d-elements, Mn, Fe, Co, on basis of thermogravimetric data. Izv. Vyssh. Uchebn. Zaved. Khim. Khimich. Tekhnol., 2019, 62, 111.

[14]

Shurdumov GK, Kardanova YL. Chemical evolution MeSO4−Na2CO3−Mo(W)O4 type systems during heat treatment and the development of optimized solid phase synthesis method molybdates and tungstates d-elements family (Me-d-element). Proceeding of the Kabardino-Balkarian State University, 2016, 6, 63

[15]

Shurdumov GK, Cherkesov ZA, Kerefov ZO. Synthesis of sodium tungstate from the system Na2C2O4–NaNO3–WO3. Russ. J. Inorg. Chem., 2007, 52, 674.

[16]

Sun SQ. Study on the chemical behavior of solid phase reaction of WO3 and Me2CO3 by the method of thermal analysis. Chem. Res. Chin. Univ., 1985, 6, 151

[17]

Pikulin KV, Selivanov EN, Galkova LI, Gulyaeva RI. Specific features of the phase formation and process kinetic for wolframite concentrate sintering with sodium carbonate. Khimich. Tekhnol., 2018, 19, 413

[18]

Faber J, Fawcett T. The powder diffraction file: present and future. Acta Crystallogr. Sect. B: Struct. Sci, 2002, 58, 325.

[19]

Flammersheim HJ, Opfermann J. Formal kinetic evaluation of reactions with partial diffusion control. Thermochim. Acta, 1999, 337, 141.

[20]

García-Matres E, Stüßer N, Hofman M, Reehuis M. Magnetic phases in MnOin1−xUFeOinxUWO4 studied by neutron powder diffraction. Eur. Phys. J. B, 2003, 32, 35.

[21]

Sasaki A. Variation of unit cell parameters in wolframite series. Mineral. J., 1959, 2, 375.

[22]

Posypaiko VI, Alexeeva EA, Vasina NA. Melting Diagrams of Salt Systems. P. 3, 1979, Moscow, Metallurgiya

[23]

Kopylov NI, Kaminskii YuD, Polugrudov AV. The NaNO3–Na2CO3–Na2WO4 system. Russ. J. Inorg. Chem., 1998, 43, 1952

[24]

Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta, 2011, 520, 1.

[25]

Vyazovkin S. A unified approach to kinetic processing of non-isothermal data. Int. J. Chem. Kinet., 1996, 28, 95.

[26]

Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and non-isothermal data. Thermochim. Acta, 1999, 340, 53.

[27]

Shurdumov GK, Shurdumova ZV, Cherkesov ZA. Synthesis of potassium tungstate in the K2CO3–KNO3–WO3. Russ. J. Inorg. Chem., 2009, 54, 137.

[28]

Brown ME, Dollimore D, Galwey AK. Reactions in the Solid State, 1980, Amsterdam, Elsevier

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/