Electrochemical behavior and corrosion resistance of IrO2-ZrO2 binary oxide coatings for promoting oxygen evolution in sulfuric acid solution

Bao Liu , Shuo Wang , Cheng-yan Wang , Bao-zhong Ma , Yong-qiang Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (2) : 264 -273.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (2) : 264 -273. DOI: 10.1007/s12613-019-1847-0
Article

Electrochemical behavior and corrosion resistance of IrO2-ZrO2 binary oxide coatings for promoting oxygen evolution in sulfuric acid solution

Author information +
History +
PDF

Abstract

In this study, we prepared Ti/IrO2-ZrO2 electrodes with different ZrO2 contents using zirconium-n-butoxide (C16H36O4Zr) and chloroiridic acid (H2IrCl6) via a sol-gel route. To explore the effect of ZrO2 content on the surface properties and electrochemical behavior of electrodes, we performed physical characterizations and electrochemical measurements. The obtained results revealed that the binary oxide coating was composed of rutile IrO2, amorphous ZrO2, and an IrO2-ZrO2 solid solution. The IrO2-ZrO2 binary oxide coatings exhibited cracked structures with flat regions. A slight incorporation of ZrO2 promoted the crystallization of the active component IrO2. However, the crystallization of IrO2 was hindered when the added ZrO2 content was greater than 30at%. The appropriate incorporation of ZrO2 enhanced the electrocatalytic performance of the pure IrO2 coating. The Ti/70at%IrO2-30at%ZrO2 electrode, with its large active surface area, improved electrocatalytic activity, long service lifetime, and especially, lower cost, is the most effective for promoting oxygen evolution in sulfuric acid solution.

Keywords

electrode / IrO2-ZrO2 / oxygen evolution reaction / electrochemical behavior / corrosion resistance

Cite this article

Download citation ▾
Bao Liu, Shuo Wang, Cheng-yan Wang, Bao-zhong Ma, Yong-qiang Chen. Electrochemical behavior and corrosion resistance of IrO2-ZrO2 binary oxide coatings for promoting oxygen evolution in sulfuric acid solution. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(2): 264-273 DOI:10.1007/s12613-019-1847-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Devilliers D, Mahé E. Modified titanium electrodes: Application to Ti/TiO2/PbO2 dimensionally stable anodes. Electrochim. Acta, 2010, 55(27): 8207

[2]

Zhao Y, YFE Fan LZ, Qiu YF, Yang SH. A new route for the electrodeposition of platinum-nickel alloy nanoparticles on multi-walled carbon nanotubes. Electrochim. Acta, 2007, 52(19): 5873

[3]

Lu J L, Lu SF, Wang DL, Yang M, Liu ZL, Xu CW, Jiang SP. Nano-structured PdxP1−x/Ti anodes prepared by electrodeposition for alcohol electrooxidation. Electrochim. Acta, 2009, 54(23): 5486

[4]

Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt TJ. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol., 2014, 4(11): 3800

[5]

Siracusano S, Baglio V, Di Blasi A, Briguglio N, Stassi A, Ornelas R, Trifoni E, Antonucci V, Aricò AS. Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst. Int. J. Hydrogen Energy, 2010, 35(11): 5558

[6]

Shu J, Qiu ZL, Lv SZ, Zhang KY, Tang DP. Plasmonic enhancement coupling with defect-engineered TiO2−x: A mode for sensitive photoelectrochemical biosensing. Anal. Chem., 2018, 90(4): 2425

[7]

Cai GN, Yu ZZ, Ren RR, Tang DP. Exciton-plasmon interaction between AuNPs/graphene nanohybrids and CdS quantum dots/TiO2 for photoelectrochemical aptasensing of prostate-specific antigen. ACS Sens., 2018, 3(3): 632

[8]

Qiu ZL, Shu J, Tang DP. Near-infrared-to ultraviolet light-mediated photoelectrochemical aptasensing platform for cancer biomarker based on core-shell NaYF4:Yb, Tm@TiO2 upconversion microrods. Anal. Chem., 2018, 90(1): 1021

[9]

Tang J, Tang DP, Niessner R, Knopp D. A novel strategy for ultra-sensitive electrochemical immunoassay of biomarkers by coupling multifunctional iridium oxide (IrOx) nanospheres with catalytic recycling of self-produced reactants. Anal. Bioanal. Chem., 2011, 400(7): 2041

[10]

Chen XM, Chen GH. Stable Ti/RuO2-Sb2O5-SnO2 electrodes for O2 evolution. Electrochim. Acta, 2005, 50(20): 4155

[11]

Moradi F, Dehghanian C. Addition of IrO2 to RuO2 + TiO2 coated anodes and its effect on electrochemical performance of anodes in acid media. Prog. Nat. Sci: Mater. Int., 2014, 24(2): 134

[12]

Gajić-Krstajić LM, Trišović TL, Krstajić NV. Spectrophotometric study of the anodic corrosion of Ti/RuO2 electrode in acid sulfate solution. Corros. Sci., 2004, 46(1): 65

[13]

Shan R, Zhang ZC, Kan M, Zhang TY, Zan Q, Zhao YX. A novel highly active nanostructured IrO2/Ti anode for water oxidation. Int. J. Hydrogen Energy, 2015, 40(41): 14279

[14]

Vallet CE, Tilak BV, Zuhr RA, Chen CP. Rutherford backscattering spectroscopic study of the failure mechanism of (RuO2 + TiO2)/Ti thin film electrodes in H2SO4 solutions. J. Electrochem. Soc., 1997, 144(4): 1289

[15]

Li BS, Lin A, Gan FX. Preparation and characterization of Ti/IrO2-Ta2O5 anodes for oxygen evolution used to sulfate electrolysis. Rare Met. Mater. Eng., 2007, 36(2): 245

[16]

Zhang J J, Hu J M, Zhang J Q, Cao CN. IrO2-SiO2 binary oxide films: Geometric or kinetic interpretation of the improved electrocatalytic activity for the oxygen evolution reaction. Int. J. Hydrogen Energy, 2011, 36(9): 5218

[17]

Iwakura C, Sakamoto K. Effect of active layer composition on the service life of (SnO2 and RuO2)-coated Ti electrodes in sulfuric acid solution. J. Electrochem. Soc., 1985, 132(10): 2420

[18]

Pathiraja GC, Nanayakkara N, Wijayasinghe A. Oxygen evolution reaction of Ti/IrO2-SnO2 electrodes: a study by cyclic voltammetry. Bull. Mater. Sci., 2016, 39(3): 803

[19]

Mazhari HA, Jafarzadeh K, Mirali SM. An investigation of the effect of RuO2 on the deactivation and corrosion mechanism of a Ti/IrO2-Ta2O5 coating in an OER application. J. Electroanal. Chem., 2016, 777, 67

[20]

Vercesi GP, Salamin J Y, Comninellis C. Morphological and microstructural the Ti/IrO2-Ta2O5 electrode: effect of the preparation temperature. Electrochim. Acta, 1991, 36(5–6): 991

[21]

Palma-Goyes RE, Vazquez-Arenas J, Ostos C, Torres-Palma RA, González I. The effects of ZrO2 on the electrocatalysis to yield active chlorine species on Sb2O5-doped Ti/RuO2 anodes. J. Electrochem. Soc, 2016, 163(9): H818

[22]

Burke LD, McCarthy M. Oxygen gas evolution at, and deterioration of, RuO2/ZrO2-coated titanium anodes at elevated temperature in strong base. Electrochim. Acta, 1984, 29(2): 211

[23]

Wang J B, Zhu WP, He XW, Yang SX. Catalytic wet air oxidation of acetic acid over different ruthenium catalysts. Catal. Commun., 2008, 9(13): 2163

[24]

Shao YQ, Yi ZY, He C, Zhu J Q, Tang D. Effects of annealing temperature on the structure and capacitive performance of nanoscale Ti/IrO2-ZrO2 electrodes. J. Am. Ceram. Soc., 2015, 98(5): 1485

[25]

Comninellis CH, Vercesi GP. Characterization of DSA®-type oxygen evolving electrodes: choice of a coating. J. Appl. Electrochem., 1991, 21(4): 335

[26]

Terezo AJ, Pereira EC. Preparation and characterisation of Ti/RuO2 anodes obtained by sol-gel and conventional routes. Mater. Lett., 2002, 53(4–5): 339

[27]

Liu B, Wang CY, Chen YQ, Ma BZ, Zhang J L. Effects of calcination temperature on the surface morphology and electrocatalytic properties of Ti/IrO2-ZrO2 anodes in an oxygen evolution application. J. Electrochem. Soc., 2018, 165(14): F1192

[28]

Malpass GRP, Motheo AJ. Cyclic voltammetric behavior of dimensionally stable anodes in the presence of C1–C3 aldehydes. J. Braz. Chem. Soc., 2003, 14(4): 645

[29]

Lee WH, Kim H. Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions. Catal. Commum., 2011, 12(6): 408

[30]

Xu W, Haarberg GM, Sunde S, Seland F, Ratvik AP, Zimmerman E, Shimamune T, Gustavsson J, Akre T. Calcination temperature dependent catalytic activity and stability of IrO2-Ta2O5 anodes for oxygen evolution reaction in aqueous sulfate electrolytes. J. Electrochem. Soc, 2017, 164(9): F895

[31]

Wu LK, Liu XY, Hu JM. Electrodeposited SiO2 film: a promising interlayer of a highly active Ti electrode for the oxygen evolution reaction. J. Mater. Chem. A, 2016, 4(30): 11949

[32]

Da Silva LA, Alves VA, Da Silva MAP, Trasatti S, Boodts JFC. Morphological chemical and electrochemical properties of Ti/(TiO2-IrO2) electrodes. Can. J. Chem., 1997, 75(11): 1483

[33]

Pfeifer V, Jones TE, Velasco Vélez JJ, Massué C, Greiner MT, Arrigo R, Teschner D, Girgsdies F, Scherzer M, Allan J, Hashagen M, Weinberg G, Piccinin S, Hävecker M, Knop-Gericke A, Schlögl R. The electronic structure of iridium oxide electrodes active in water splitting. Phys. Chem. Chem. Phys., 2016, 18, 2292

[34]

Xu RD, Huang LP, Zhou JF, Zhan P, Guan YY, Kong Y. Effects of tungsten carbide on electrochemical properties and microstructural features of Al/Pb-PANI-WC composite inert anodes used in zinc electrowinning. Hydrometallurgy, 2012, 125–126, 8

[35]

Audichon T, Morisset S, Napporn TW, Kokoh KB, Comminges C, Morals C. Effect of adding CeO2 to RuO2-IrO2 mixed nanocatalysts: activity towards the oxygen evolution reaction and stability in acidic media. ChemElectroChem, 2015, 2(8): 1128

[36]

Rasten E, Hagen G, Tunold R. Electrocatalysts in water electrolysis with solid polymer electrolyte. Electrochim. Acta, 2003, 48(25–26): 3945

[37]

Santana MHP, De Faria LA, Boodts JFC. Effect of preparation procedure of IrO2-Nb2O5 anodes on surface and electrocatalytic properties. J. Appl. Electrochem., 2005, 35(9): 915

[38]

Da Silva LM, De Faria LA, Boodts JFC. Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency. Electrochim. Acta, 2003, 48(6): 699

[39]

Lassali TAF, Boodts JFC, Bulhoes LOS. Charging processes and electrocatalytic properties of IrO2/TiO2/SnO2 oxide films investigated by in situ AC impedance measurements. Electrochim. Acta, 1999, 44(24): 4203

[40]

Hu J M, Meng HM, Zhang JQ, Cao CN. Degradation mechanism of long service life Ti/IrO2-Ta2O5 oxide anodes in sulphuric acid. Corros. Sci., 2002, 44(8): 1655

[41]

Hou YY, Hu JM, Liu L, Zhang JQ, Cao CN. Effects of calcination temperature on electrocatalytic activities of Ti/IrO2 electrodes in methanol aqueous solutions. Electrochim. Acta, 2006, 51(28): 6258

[42]

Palmas S, Polcaro AM, Ferrara F, Ruiz JR, Delogu F, Bonatto-Minella C, Mulas G. Electrochemical performance of mechanically treated SnO2 powers for OER in acid solution. J. Appl. Electrochem., 2008, 38(7): 907

[43]

Piela B, Wrona PK. Capacitance of the gold electrode in 0.5 M H2SO4 solution: a.c. impedance studies. J. Appl. Electroanal. Chem., 1995, 388(1–2): 69

[44]

Yang HT, Liu HR, Guo ZC, Chen BM, Zhang YC, Huang H, Li XL, Fu RC, Xu RD. Electrochemical behavior of rolled Pb-0.8%Ag anodes. Hydrometallurgy, 2013, 140, 144

[45]

Alves VA, da Silva LA, Boodts JFC. Surface characterisation of IrO2/TiO2/CeO2 oxide electrodes and Faradaic impedance investigation of the oxygen evolution reaction from alkaline solution. Electrochim. Acta, 1998, 44(8–9): 1525

[46]

Ye ZG, Meng HM, Sun DB. New degradation mechanism of Ti/IrO2-MnO2 anode for oxygen evolution in 0.5 M H2SO4 solution. Electrochim. Acta, 2008, 53(18): 5639

[47]

Martelli GN, Ornelas R, Faita G. Deactivation mechanisms of oxygen evolving anodes at high current densities. Electrochim. Acta, 1994, 39(11–12): 1551

[48]

Kötz R, Neff H, Stucki S. Anodic iridium oxide films: XPS-studies of oxidation state changes and O2-evolution. J. Electrochem. Soc., 1984, 131(1): 72

[49]

Song Y, Wei G, Xiong R. Structure and properties of PbO2-CeO2 anodes on stainless steel. Electrochim. Acta, 2007, 52(24): 7022

[50]

Yang HT, Chen BM, Liu HR, Guo ZC, Zhang YC, Li XL, Xu RD. Effects of manganese nitrate concentration on the performance of an aluminum substrate β-PbO2-MnO2-WC-ZrO2 composite electrode material. Int. J. Hydrogen Energy, 2014, 39(7): 3087

[51]

Zhang W, Ghali E, Houlachi G. Review of oxide coated catalytic titanium anodes performance for metal electrowinning. Hydrometallurgy, 2017, 169, 456

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/