Recent progress in diamond-based MOSFETs

Xiao-lu Yuan , Yu-ting Zheng , Xiao-hua Zhu , Jin-long Liu , Jiang-wei Liu , Cheng-ming Li , Peng Jin , Zhan-guo Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (10) : 1195 -1205.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (10) : 1195 -1205. DOI: 10.1007/s12613-019-1843-4
Invited Review

Recent progress in diamond-based MOSFETs

Author information +
History +
PDF

Abstract

Recent developments in the use of diamond materials as metal-oxide-semiconductor field-effect transistors (MOSFETs) are introduced in this article, including an analysis of the advantages of the device owing to the unique physical properties of diamond materials, such as their high-temperature and negative electron affinity characteristics. Recent research progress by domestic and international research groups on performance improvement of hydrogen-terminated and oxygen-terminated diamond-based MOSFETs is also summarized. Currently, preparation of large-scale diamond epitaxial layers is still relatively difficult, and improvements and innovations in the device structure are still ongoing. However, the key to improving the performance of diamond-based MOSFET devices lies in improving the mobility of channel carriers. This mainly includes improvements in doping technologies and reductions in interface state density or carrier traps. These will be vital research goals for the future of diamond-based MOSFETs.

Keywords

diamond / MOSFETs / semiconductor / carrier mobility / doping

Cite this article

Download citation ▾
Xiao-lu Yuan, Yu-ting Zheng, Xiao-hua Zhu, Jin-long Liu, Jiang-wei Liu, Cheng-ming Li, Peng Jin, Zhan-guo Wang. Recent progress in diamond-based MOSFETs. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(10): 1195-1205 DOI:10.1007/s12613-019-1843-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reggiani L, Bosi S, Canali C, Nava F, Kozlov SF. Hole-drift velocity in natural diamond. Phys. Rev. B, 1981, 23, 3050.

[2]

Isberg J, Hammersberg J, Johansson E, Wikström T, Twitchen DJ, Whitehead AJ, Coe SE, Scarsbrook GA. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297, 1670.

[3]

Wort CJH, Balmer RS. Diamond as an electronic material. Mater. Today, 2008, 11, 22.

[4]

Shikata S. Single crystal diamond wafers for high power electronics. Diamond Relat. Mater., 2016, 65, 168.

[5]

Umezawa H, Nagase M, Kato Y, Shikata S. High temperature application of diamond power device. Diamond Relat. Mater., 2012, 24, 201.

[6]

H. Kawarada, T. Yamada, D. Xu, H. Tsuboi, Y. Kitabayashi, D. Matsumura, M. Shibata, T. Kudo, M. Inaba, and A. Hiraiwa, Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications, Sci. Rep., 7(2017), art. No. 42368.

[7]

Sze SM, Ng KK. Physics of Semiconductor Devices, 2006, New Jersey, John Wiley & Sons

[8]

Baliga BJ. Fundamentals of Power Semiconductor Device, 2008

[9]

Cui JB, Ristein J, Ley L. Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface. Phys. Rev. Lett., 1998, 81, 429.

[10]

Crawford Kevin G., Cao Liang, Qi Dongchen, Tallaire Alexandre, Limiti E., Verona C., Wee Andrew T. S., Moran David A. J. Enhanced surface transfer doping of diamond by V2O5 with improved thermal stability. Applied Physics Letters, 2016, 108(4): 042103.

[11]

M. Kasu, Diamond field-effect transistors for RF power electronics: Novel NO2 hole doping and low-temperature deposited Al2O3 passivation, Jpn. J. Appl. Phys., 56(2016), No. 1S, art. No. 01AA01.

[12]

M. Kasu, K. Hirama, K. Harada, and T. Oishi, Study on capacitance-voltage characteristics of diamond field-effect transistors with NO2 hole doping and Al2O3 gate insulator layer, Jpn. J. Appl. Phys., 55(2016), No. 4, art. No. 041301.

[13]

Maier F, Riedel M, Mantel B, Ristein J, Ley L. Origin of surface conductivity in diamond. Phys. Rev. Lett., 2000, 85, 3472.

[14]

Liu J. W., Liao M. Y., Imura M., Oosato H., Watanabe E., Koide Y. Electrical characteristics of hydrogen-terminated diamond metal-oxide-semiconductor with atomic layer deposited HfO2 as gate dielectric. Applied Physics Letters, 2013, 102(11): 112910.

[15]

Syamsul M., Kitabayashi Y., Matsumura D., Saito T., Shintani Y., Kawarada H. High voltage breakdown (1.8 kV) of hydrogenated black diamond field effect transistor. Applied Physics Letters, 2016, 109(20): 203504.

[16]

Kawarada H, Yamada T, Xu D, Kitabayashi Y, Shibata M, Matsumura D, Kobayashi M, Saito T, Kudo T, Inaba M, Hiraiwa A. Diamond MOSFETs using 2D hole gas with 1700V breakdown voltage. Proceedings of the 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2016 483.

[17]

Kitabayashi Y, Kudo T, Tsuboi H, Yamada T, Xu D, Shibata M, Matsumura D, Hayashi Y, Syamsul M, Inaba M, Hiraiwa A, Kawarada H. Normally-off C-H diamond MOSFETs with partial C-O channel achieving 2kV breakdown voltage. IEEE Elect. Dev. Lett., 2017, 38, 363.

[18]

Takeuchi D., Kato H., Ri G. S., Yamada T., Vinod P. R., Hwang D., Nebel C. E., Okushi H., Yamasaki S. Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces. Applied Physics Letters, 2005, 86(15): 152103.

[19]

Gildenblat GS, Grot SA, Hatfield CW, Badzian AR. High-temperature thin-film diamond field-effect transistor fabricated using a selective growth method. IEEE Elect. Dev. Lett., 1991, 12, 37.

[20]

M. Aoki and H. Kawarada, Electric properties of metal/ diamond interfaces utilizing hydrogen-terminated surfaces of homoepitaxial diamonds, Jpn. J. Appl. Phys., 33(1994), No. 5B, p. L708.

[21]

Kovi KK, Vallin Majdi S, Isberg J. Inversion in metal-oxide-semiconductor capacitors on boron-doped diamond. IEEE Elect. Dev. Lett., 2015, 36, 603.

[22]

Liu JL, Chen LX, Zheng YT, Wang JT, Feng ZH, Li CM. Carrier transport characteristics of H-terminated diamond films prepared using molecular hydrogen and atomic hydrogen. Int. J. Miner. Metall. Mater., 2017, 24, 850.

[23]

Imura M, Hayakawa R, Ohsato H, Watanabe E, Tsuya D, Nagata T, Liao MY, Koide Y, Yamamoto J, Ban K, Iwaya M, Amano H. Development of AlN/diamond heterojunction field effect transistors. Diamond Relat. Mater., 2012, 24, 206.

[24]

J.W. Liu, M.Y. Liao, M. Imura, H. Oosato, E. Watanabe, A. Tanaka, H. Iwai, and Y. Koide, Interfacial band configuration and electrical properties of LaAlO3/Al2O3/hydrogenated-diamond metal-oxide-semiconductor field effect transistors, J. Appl. Phys., 114(2013), No. 8, art. No. 084108.

[25]

J.W. Liu, M.Y. Liao, M. Imura, E. Watanabe, H. Oosato, and Y. Koide, Diamond field effect transistors with a high-dielectric constant Ta2O5 as gate material, J. Phys. D, 47(2014), No. 24, art. No. 245102.

[26]

J. Liu, M. Liao, M. Imura, A. Tanaka, H. Iwai, and Y. Koide, Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric, Sci. Rep., 4(2014), art. No. 6395.

[27]

Liu J. W., Oosato H., Liao M. Y., Koide Y. Enhancement-mode hydrogenated diamond metal-oxide-semiconductor field-effect transistors with Y2O3 oxide insulator grown by electron beam evaporator. Applied Physics Letters, 2017, 110(20): 203502.

[28]

J.W. Liu, M.Y. Liao, M. Imura, R.G. Banal, and Y. Koide, Deposition of TiO2/Al2O3 bilayer on hydrogenated diamond for electronic devices: Capacitors, field-effect transistors, and logic inverters, J. Appl. Phys., 121(2017), No. 22, art. No. 224502.

[29]

J.W. Liu, M.Y. Liao, M. Imura, and Y. Koide, High-k ZrO2/Al2O3 bilayer on hydrogenated diamond: Band configuration, breakdown field, and electrical properties of field-effect transistors, J. Appl. Phys., 120(2016), No. 12, art. No. 124504.

[30]

Liu JW, Liao MY, Imura M, Oosato H, Watanabe E, Koide Y. Electrical properties of atomic layer deposited HfO2/Al2O3 multilayer on diamond. Diamond Relat. Mater., 2015, 54, 55.

[31]

Banal Ryan G., Imura Masataka, Liu Jiangwei, Koide Yasuo. Structural properties and transfer characteristics of sputter deposition AlN and atomic layer deposition Al2O3 bilayer gate materials for H-terminated diamond field effect transistors. Journal of Applied Physics, 2016, 120(11): 115307.

[32]

Liu J. W., Liao M. Y., Imura M., Matsumoto T., Shibata N., Ikuhara Y., Koide Y. Control of normally on/off characteristics in hydrogenated diamond metal-insulator-semiconductor field-effect transistors. Journal of Applied Physics, 2015, 118(11): 115704.

[33]

Russell S, Sharabi S, Tallaire A, Moran DAJ. RF operation of hydrogen-terminated diamond field effect transistors: a comparative study. IEEE Trans. Electron Devices, 2015, 62, 751.

[34]

Liu JW, Ohsato H, Liao MY, Imura M, Watanabe E, Koide Y. Logic circuits with hydrogenated diamond field-effect transistors. IEEE Electron Devices Lett., 2017, 38, 922.

[35]

M.Y. Liao, J.W. Liu, L.W. Sang, D. Coathup, J.L. Li, M. Imura, Y. Koide, and H.T. Ye, Impedance analysis of Al2O3/H-terminated diamond metal-oxide-semiconductor structures, Appl. Phys. Lett., 106(2015), No. 8, art. No. 083506.

[36]

Wong HY, Braga N, Mickevicius RV. Prediction of highly scaled hydrogen-terminated diamond MISFET performance based on calibrated TCAD simulation. Diamond Relat. Mater., 2017, 80, 14.

[37]

Wong HY, Braga N, Mickevicius RV. A physical model of the abnormal behavior of hydrogen-terminated Diamond MESFET. 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2017 333.

[38]

Fu Y, Xu RM, Xu YH, Zhou JJ, Wu QZ, Kong YC, Zhang Y, Chen TS, Yan B. Characterization and modeling of hydrogen-terminated MOSFETs with single-crystal and polycrystalline diamond. IEEE Electron Devices Lett., 2018, 39, 1704.

[39]

Fu Y, Xu YH, Xu RM, Zhou JJ, Kong YC. Physical-based simulation of DC characteristics of hydrogen-terminated diamond MOSFETs. 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 2017 1

[40]

Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen DJ, Scarsbrook GA, Coe SE. Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz. IEEE Electron Devices Lett, 2006, 27, 570.

[41]

Wang JJ, He ZZ, Yu C, Song XB, Xu P, Zhang PW, Guo H, Liu JL, Li CM, Cai SJ, Feng ZH. Rapid deposition of polycrystalline diamond film by DC arc plasma jet technique and its RF MESFETs. Diamond Relat. Mater., 2014, 43, 43.

[42]

Pham T. T., Maréchal A., Muret P., Eon D., Gheeraert E., Rouger N., Pernot J. Comprehensive electrical analysis of metal/Al2O3/O-terminated diamond capacitance. Journal of Applied Physics, 2018, 123(16): 161523.

[43]

Pham TT, Pernot J, Perez G, Eon D, Gheeraert E, Rouger N. Deep-depletion mode boron-doped monocrystalline diamond metal oxide semiconductor field effect transistor. IEEE Electron Devices Lett., 2017, 38, 1571.

[44]

Pham T. T., Rouger N., Masante C., Chicot G., Udrea F., Eon D., Gheeraert E., Pernot J. Deep depletion concept for diamond MOSFET. Applied Physics Letters, 2017, 111(17): 173503.

[45]

T. Matsumoto, H. Kato, K. Oyama, T. Makino, M. Ogura, D. Takeuchi, T. Inokuma, N. Tokuda, and S. Yamasaki, Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics, Sci. Rep., 6(2016), art. No. 31585.

[46]

Matsumoto Tsubasa, Kato Hiromitsu, Makino Toshiharu, Ogura Masahiko, Takeuchi Daisuke, Yamasaki Satoshi, Imura Masataka, Ueda Akihiro, Inokuma Takao, Tokuda Norio. Direct observation of inversion capacitance in p-type diamond MOS capacitors with an electron injection layer. Japanese Journal of Applied Physics, 2018, 57(4S): 04FR01.

[47]

Maréchal A., Aoukar M., Vallée C., Rivière C., Eon D., Pernot J., Gheeraert E. Energy-band diagram configuration of Al2O3/oxygen-terminated p-diamond metal-oxide-semiconductor. Applied Physics Letters, 2015, 107(14): 141601.

[48]

J.W. Liu, M.Y. Liao, M. Imura, and Y. Koide, Band offsets of Al2O3 and HfO2 oxides deposited by atomic layer deposition technique on hydrogenated diamond, Appl. Phys. Lett., 101(2012), No. 25, art. No. 252108.

[49]

Pham T. T., Gutiérrez M., Masante C., Rouger N., Eon D., Gheeraert E., Araùjo D., Pernot J. High quality Al2O3/(100) oxygen-terminated diamond interface for MOSFETs fabrication. Applied Physics Letters, 2018, 112(10): 102103.

[50]

Tallaire A, Achard J, Silva F, Brinza O, Gicquel A. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges. C. R. Phys., 2013, 14, 169.

[51]

Yamada H., Chayahara A., Mokuno Y., Kato Y., Shikata S. A 2-in. mosaic wafer made of a single-crystal diamond. Applied Physics Letters, 2014, 104(10): 102110.

[52]

M. Schreck, S. Gsell, R. Brescia, and M. Fischer, Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers, Sci. Rep., 7(2017), art. No. 44462.

[53]

Koizumi S, Umezawa H, Pernot J, Suzuki M. Power Electronics Device Applications of Diamond Semiconductors, 2018, Cambridge, Woodhead Publishing, 383

[54]

Bohr S, Haubner R, Lux B. Influence of phosphorus addition on diamond CVD. Diamond Relat. Mater., 1995, 4, 133.

[55]

Demlow SN, Rechenberg R, Grotjohn T. The effect of substrate temperature and growth rate on the doping efficiency of single crystal boron doped diamond. Diamond Relat. Mater, 2014, 49, 19.

[56]

Matsumoto T, Kato H, Tokuda N, Makino T, Ogura M, Takeuchi D, Okushi H, Yamasaki S. Reduction of n-type diamond contact resistance by graphite electrode. Phys. Status Solidi RRL, 2014, 8, 137.

[57]

Mi S, Toros A, Graziosi T, Quack N. Non-contact polishing of single crystal diamond by ion beam etching. Diamond Relat. Mater., 2019, 92, 248.

[58]

Li FN, Liu JW, Zhang JW, Wang XL, Wang W, Liu ZC, Wang HX. Measurement of barrier height of Pd on diamond (100) surface by X-ray photoelectron spectroscopy. Appl. Surf. Sci., 2016, 370, 496.

[59]

Li F, Zhang J, Wang X, Liu Z, Wang W, Li S, Wang HX. X-ray photoelectron spectroscopy study of Schottky junctions based on oxygen-/fluorine-terminated (100) diamond. Diamond Relat. Mater., 2016, 63, 180.

[60]

J. Wang, G. Wang, D. Wang, S. Li, and P. Zeng, A megawatt-level surface wave oscillator in Y-band with large oversized structure driven by annular relativistic electron beam, Sci. Rep., 8(2018), No. 1, art. No. 6978.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/