Novelty phase synthesis mechanism and morphology in resin-bonded Al-Al2O3-TiO2 composites at high temperatures under flowing N2

Yang Sun , Yong Li , Li-xin Zhang , Shi-ming Li , Ming-wei Yan , Jia-lin Sun

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (9) : 1177 -1185.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (9) : 1177 -1185. DOI: 10.1007/s12613-019-1829-2
Article

Novelty phase synthesis mechanism and morphology in resin-bonded Al-Al2O3-TiO2 composites at high temperatures under flowing N2

Author information +
History +
PDF

Abstract

An Al-AlN core-shell structure is beneficial to the performance of Al-Al2O3 composites. In this paper, the phase evolution and microstructure of Al-Al2O3-TiO2 composites at high temperatures in flowing N2 were investigated after the Al-AlN core-shell structure was created at 853 K for 8 h. The results show that TiO2 can convert Al into Al3Ti (~1685 K), which reduces the content of metal Al and rearranges the structure of the composite. Under N2 conditions, Al3Ti is further transformed into a novelty non-oxide phase, TiCN. The transformation process can be expressed as follows: Al3Ti reacts with C and other carbides (Al4C3 and Al4O4C) to form TiC x (x < 1). As the firing temperature increases, Al3Ti transforms into a liquid phase and produces Ti(g) and TiO(g). Finally, Ti(g) and TiO(g) are nitrided and solid-dissolved into the TiC x crystals to form a TiCN solid solution.

Keywords

aluminum / titanium oxide / alloys / titanium carbonitride

Cite this article

Download citation ▾
Yang Sun, Yong Li, Li-xin Zhang, Shi-ming Li, Ming-wei Yan, Jia-lin Sun. Novelty phase synthesis mechanism and morphology in resin-bonded Al-Al2O3-TiO2 composites at high temperatures under flowing N2. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(9): 1177-1185 DOI:10.1007/s12613-019-1829-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ewais EMM. Carbon based refractories. J. Ceram. Soc. Jpn., 2004, 112, 517.

[2]

Zhu TB, Li YW, Sang SB, Xie ZP. Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets. Mater. Des., 2017, 124, 16.

[3]

Yang W, Wang XH, Zhang LF, Shan QL, Liu XF. Cleanliness of low carbon aluminum-killed steels during secondary refining processes. Steel Res. Int., 2013, 84, 473.

[4]

Ma CH, Li Y, Yan MW, Sun Y, Sun JL. Investigation on a postmortem resin-bonded Al-Si-Al2O3, sliding gate with functional gradient feature. Ceram. Int., 2018, 44, 6384.

[5]

Atzenhofer C, Gschiel S, Harmuth H. Phase formation in Al2O3-C refractories with Al addition. J. Eur. Ceram. Soc., 2016, 37, 1805.

[6]

Jiang P, Sun JL, Xue WD, Chen JH, Kumar RV, Li Y. New synthetic route to Al4O4C reinforced Al-Al2O3 composite materials. Solid State Sci., 2015, 46, 33.

[7]

Yan MW, Li Y, Li HY, Sun JL. Theoretical analysis and synthesis of Al4O4C and Al2CO phase in the resin bonded Al-Al2O3 refractory in N2-flowing. Ceram. Int., 2017, 44, 1493.

[8]

Zhang S, Yamaguchi A. Hydration resistances and reactions with CO of Al4O4C and Al2OC formed in carbon-containing refractories with Al. J. Ceram. Soc. Jpn., 1996, 104, 393.

[9]

Qiu CA, Metselaar R. Thermodynamic evaluation of the Al2O3-Al4C3 system and stability of Al-oxycarbides. Z. Metallkd., 1995, 86, 198

[10]

Amma EL, Jeffrey GA. Structure of aluminum oxycarbide Al2OC: a short-range wurtzite super-structure. J. Chem. Phys., 1961, 34, 252.

[11]

Lihrmann JM, Tirlocq J, Descamps P, Cambier F. Thermodynamics of the Al-C-O system and properties of SiC-AlN-Al2OC composites. J. Eur. Ceram. Soc., 1999, 19, 2781.

[12]

Lihrmann JM. Thermodynamics of the Al2O3-Al4C3 system: I. Thermochemical functions of Al oxide, carbide and oxycarbides between 298 and 2100 K. J. Eur. Ceram. Soc., 2008, 28, 633.

[13]

Lihrmann JM. Thermodynamics of the Al2O3-Al4C3 system: II. Free energies of mixing, solid solubilities and activities. J. Eur. Ceram. Soc., 2008, 28, 643.

[14]

Lihrmanm JM. Thermodynamics of the Al2O3-Al4C3 system: III. Equilibrium vapour pressures and activation energies for volatilization. J. Eur. Ceram. Soc., 2008, 28, 649.

[15]

Lihrmann JM, Zambetakis T, Daire M. High-temperature behavior of the aluminum oxycarbide Al2OC in the system Al2O3-Al4C3 and with additions of aluminum nitride. J. Am. Ceram. Soc., 1989, 72, 1704.

[16]

Kuo SY, Virkar AV. Phase equilibria and phase transformation in the aluminum nitride-aluminum oxycarbide pseudobinary system. J. Am. Ceram. Soc., 1989, 72, 540.

[17]

Motzfeldt K. Comment on “Thermodynamics of the Al-C-O ternary system”. J. Electrochem. Soc., 2007, 154, S1.

[18]

Cheng K, Yu C, Ding J, Deng CJ, Zhu HX, Xue ZL. Synthesis and characterization of AlN whiskers by nitridation of Al4O4C. J. Alloys Compd., 2017, 719, 308.

[19]

Cheng K, Deng CJ, Ding J, Yu C, Zhu HX. Synthesis of Al2O3 nanowires by heat-treating Al4O4C in a carbon-containing environment. Ceram. Int., 2017, 44, 4996.

[20]

Li YB, Bando Y, Golberg D. Single-crystalline α-Al2O3 nanotubes converted from Al4O4C nanowires. Adv. Mater., 2005, 17, 1401.

[21]

Zhu HG, Jiang YL, Yao YQ, Song JZ, Li JL, Xie ZH. Reaction pathways, activation energies and mechanical properties of hybrid composites synthesized in-situ from Al-TiO2-C powder mixtures. Mater. Chem. Phys., 2012, 137, 532.

[22]

Xia TD, Liu TZ, Zhao WJ, Ma BY, Wang TM. Self-propagating high-temperature synthesis of Al2O3-TiC-Al composites by aluminothermic reactions. J. Mater. Sci., 2001, 36, 5581.

[23]

Ahmed YMZ, Zaki ZI, Besisa DHA, Amin AMM, Bordia RK. Effect of zirconia and iron on the mechanical properties of Al2O3/TiC composites processed using combined self-propagating synthesis and direct consolidation technique. Mater. Sci. Eng. A, 2017, 696, 182.

[24]

Hajalilou A, Hashim M, Nahavandi M, Ismail I. Mechanochemical carboaluminothermic reduction of rutile to produce TiC-Al2O3, nanocomposite. Adv. Powder Technol., 2014, 25, 423.

[25]

Yamanoglu R, Gulsoy N, Olevsky EA, Gulsoy HO. Production of porous Ti5Al2.5Fe alloy via pressureless spark plasma sintering. J. Alloys Compd., 2016, 680, 654.

[26]

Rajabi A, Ghazali MJ, Daud AR. Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet-A review. Mater. Des., 2015, 67, 95.

[27]

Yan MW, Li Y, Wang JJ, Li HY, Sun Y, Ma CH. Phase evolution mechanism of non-oxide bonded Al-Al2O3-MgO-ZrO2 composites at 1873K in flowing nitrogen. J. Am. Ceram. Soc., 2017, 101, 2162.

[28]

Kattner UR, Lin JC, Chang YA. Thermodynamic assessment and calculation of the Ti-Al system. Metall. Trans. A, 1992, 23, 2081.

[29]

Mirjalili M, Soltanieh M, Matsuura K, Ohno M. On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple. Intermetallics., 2013, 32, 297.

[30]

Sujata M, Bhargava S, Sangal S. On the formation of TiAl3 during reaction between solid Ti and liquid Al. J. Mater. Sci. Lett., 1997, 16, 1175

[31]

Mehrizi MZ, Beygi R, Eisaabadi G. Synthesis of Al/TiC-Al2O3 nanocomposite by mechanical alloying and subsequent heat treatment. Ceram. Int., 2016, 42, 8895.

[32]

Chase MW Jr. NIST-JANAF Thermochemical Tables, 1998, 4th, Washington DC, American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology

[33]

Qin YF, Zheng GF, Zhu LY, He JN, Zhang FY, Dong YC, Yin FC. Structure and wear characteristics of TiCN nanocomposite coatings fabricated by reactive plasma spraying. Surf. Coat. Technol., 2018, 342, 137.

[34]

Kostov A, Friedrich B, Zivkovic D. Predicting thermodynamic properties in Ti-Al binary system by FactSage. Comput. Mater. Sci., 2006, 37, 355.

[35]

Ashley NJ, Grimes RW, McClellan KJ. Accommodation of non-stoichiometry in TiN1-x, and ZrN1-x. J. Mater. Sci., 2007, 42, 1884.

[36]

Dridi Z, Bouhafs B, Ruterana P, Aourag H. First-principles calculations of vacancy effects on structural and electronic properties of TiCx and TiNx. J. Phys. Condens. Matter, 2002, 14, 10237.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/