Review on nanocomposites fabricated by mechanical alloying

Mohammed A. Taha , Rasha A. Youness , M.F. Zawrah

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (9) : 1047 -1058.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (9) : 1047 -1058. DOI: 10.1007/s12613-019-1827-4
Review

Review on nanocomposites fabricated by mechanical alloying

Author information +
History +
PDF

Abstract

Composites are composed of multiphase materials, where each phase has specific properties that differ from those of the other phases which can effect on the whole properties of composite. Nanocomposites are class of materials that contain at least one phase in the nanometric size range and can be produced by any suitable technique for preparing nanomaterials. Composites are an interesting class of materials that have recently been used in numerous applications, including structural, biomedical, electronics, and environmental applications. In composites, reinforcements might be fibers, particulates, or whiskers. Mechanical alloying (MA) is a promising technique for producing nanocomposite materials that are difficult or impossible to prepare via conventional techniques. In this review, we provide an overview of nanocomposites prepared by the MA process. The mechanism of milling and other milling parameters are overviewed, and insights into sintering categories and parameters are also presented.

Keywords

nanocomposites / mechanical alloying / fabrication / sintering

Cite this article

Download citation ▾
Mohammed A. Taha, Rasha A. Youness, M.F. Zawrah. Review on nanocomposites fabricated by mechanical alloying. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(9): 1047-1058 DOI:10.1007/s12613-019-1827-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iftekhar A. Standard Handbook of Biomedical Engineering and Design, Chapter 12: Biomedical Composites, 2004, New York, McGraw-Hill Companies, 109

[2]

Callister WD, Rethwisch DG. Materials Science and Engineering: An Introduction, 2003, New York, Wiley, 197

[3]

Matthews FL, Rawlings RD. Composite Materials: Engineering and Science, 1999 72

[4]

Thostenson ET, Li C, Chou TW. Nanocomposites in context. Compos. Sci. Technol., 2005, 65, 491.

[5]

Chrissafis K, Antoniadis G, Paraskevopoulos KM, Vassiliou A, Bikiaris DN. Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(e-caprolactone) nanocomposites. Compos. Sci. Technol., 2007, 67, 2165.

[6]

Supronowicz PR, Ajayan PM, Ullmann KR, Aru-lanandam BP, Metzger DW, Bizios R. Novel current-conducting composite substrates for exposing osteoclasts to alternating current stimulation. J. Biomed. Mater. Res., 2002, 59, 499.

[7]

Stephan C, Nguyen TP, De La Chapelle ML, Lefrant S, Journet C, Bernier P. Characterization of single walled carbon nanotubes-PMMA composites. Synth. Met., 2000, 108, 139.

[8]

Youness RA, Taha MA, Ibrahim MA. Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites. J. Mol. Struct., 2017, 1150, 188.

[9]

Niespodziana K, Jurczyk K, Jakubowicz J, Jurczyk M. Fabrication and properties of titanium-hydroxyapatite nanocomposites. Mater. Chem. Phys., 2010, 123, 160.

[10]

Miranda-Hernández JG, Moreno-Guerrero S, Soto-Guzmán AB, Rocha-Rangel E. Production and characterization of Al2O3-Cu composite materials. J. Ceram. Process. Res., 2006, 7, 311

[11]

Suryanarayana C, Al-Aqeeli N. Mechanically alloyed nanocomposites. Prog. Mater. Sci., 2013, 58, 383.

[12]

Weeber AW, Bakker H, de Boer FR. The preparation of amorphous Ni-Zr powder by grinding the crystalline alloy. EPL, 1986, 2, 445.

[13]

Jangg G, Kuttner F, Korb G. Preparation and properties of dispersion hardened aluminum. Aluminum, 1975, 51, 641

[14]

Arzt E, Schultz L. New materials by mechanical alloying techniques. Mater. Manuf. Process., 1991, 6, 733.

[15]

Suryanarayana C. Mechanical Alloying and Milling, 2004, New York, Marcel Dekker

[16]

Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci., 2001, 46, 1.

[17]

Luton MJ, Jayanth CS, Disko MM, Matras S, Vallone J. Cryomilling of Nano-phase Dispersion Strengthened Aluminum. Multicomponent Ultrafine Microstructures, 1988, 132, 132

[18]

Heinicke G. Tribochemistry, 1984, Munchen, Hanser Publishers, 119

[19]

Youness RA, Taha MA, Elhaes H, Ibrahim M. Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis. Mater. Chem. Phys., 2017, 190, 209.

[20]

Youness RA, Taha MA, Elhaes H, Ibrahim M. Preparation, fourier transform infrared characterization and mechanical properties of hydroxyapatite nanopowders. J. Comput. Theor. Nanosci., 2017, 14, 2409.

[21]

Benjamin JS. Mechanical alloying. Sci. Am., 1976, 234, 40.

[22]

Benjamin JS, Volin TE. The mechanism of mechanical alloying. Metall. Trans., 1974, 5, 1929.

[23]

Gilman PS, Benjamin JS. Mechanical alloying. Annu. Rev. Mater. Sci., 1983, 13, 279.

[24]

Zawrah MF, Shaw L. Microstructure and hardness of nanostructured Al-Fe-Cr-Ti alloys through mechanical alloying. Mater. Sci. Eng. A, 2003, 355, 37.

[25]

Shaw L, Villegas J, Luo H, Zawrah MF, Miracle D. Effect of process controlling agents on mechanical alloying of nanostructured aluminum alloys. Metall. Mater. Trans. A, 2003, 34, 159.

[26]

Benjamin JS, Volin TE. The mechanism of mechanical alloying. Metall. Trans., 1974, 5, 1929.

[27]

Zawrah MF, Abdel-kader H, Elbaly NE. Fabrication of Al2O3-20 vol.% Al nanocomposite powders using high energy milling and their sinterability. Mater. Res. Bull., 2012, 47, 655.

[28]

Fogagnolo JB, Velasco F, Robert MH, Torralba JM. Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders. Mater. Sci. Eng. A, 2003, 342, 131.

[29]

Enrique RR, José ARZ, Sergio EV, Brianda CS, Ivanovich EG, Roberto MS. Effect of particle size and titanium content on the fracture toughness of particle-ceramic composites. Mater. Today: Proceedings, 2016, 3, 249

[30]

Zawrah MF, El Kheshen AA, El-Magraby AA. Effect of SiC-graphite-Al-metal addition on low- and ultra-low cement bauxite castables. Ceram. Int., 2012, 38, 3857.

[31]

Sampath S, Herman H, Shimoda N, Saito T. Thermal spray processing of FGMs. MRS Bull., 1995, 20, 27.

[32]

Davis RM, McDermott B, Koch CC. Mechanical alloying of brittle materials. Metall. Trans. A, 1988, 19, 2867.

[33]

Shrivastava S, Jadon N, Jain R. Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: A review. Trends Anal. Chem., 2016, 82, 55.

[34]

Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym. Degrad. Stab., 2010, 95, 2126.

[35]

Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27, 3413.

[36]

Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog. Polym. Sci., 2007, 32, 762.

[37]

Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: A review. Mater. Sci. Eng. C, 2017, 71, 1175.

[38]

Taha MA, Zawrah MF. Effect of nano ZrO2 on strengthening and electrical properties of Cu-Matrix nano-composits prepared by mechanical alloying. Ceram. Int., 2017, 43, 12698.

[39]

Taha MA, Zawrah MF. Mechanical alloying and sintering of Ni/10wt% Al2O3 nanocomposites and its characterization. Silicon, 2018, 10, 1351.

[40]

Zawrah MF, Taha MA, Saadallah F, Mostafa AG, Hassan MY, Nasr M. Effect of nano ZrO2 on the properties of Al-Al2O3 nanocomposites prepared by mechanical alloying. Silicon, 2018, 10, 1523.

[41]

Zawrah MF, Taha MA, Mostafa HA. In-situ formation of Al2O3/Al core-shell from waste material: production of porous composite improved by graphene. Ceram. Int., 2018, 44, 10693.

[42]

Hamzawy EM, El-Kheshen AA, Zawrah MF. Densification and properties of glass/cordierite composites. Ce-ram. Int., 2005, 31, 383.

[43]

Zawrah MF, Hamzawy EMA. Effect of cristobalite formation on sinterability, microstructure and properties of glass-alumina composites. Ceram. Int., 2002, 28, 123.

[44]

El-Kheshen AA, Zawrah MF. Sinterability, microstructure and properties of glass/ceramics composites. Ceram. Int., 2003, 29, 251.

[45]

Wahsh MMS, Khattab RM, Zawrah MF. Sintering and technological properties of alumina/zirconia/nano TiO2 ceramic composites. Mater. Res. Bull., 2013, 48, 1411.

[46]

Zawrah MF, Khattab RM, Saad EM, Gado RA. Effect of surfactant types and their concentration on the structural characteristics of nanoclay. Spectrochim. Acta Part A, 2014, 122, 616.

[47]

Khattab RM, Dadr HA, Zawrah MF. Effect of processing techniques on properties of porous TiO2 and TiO2/hydroxyapatite composites. Ceram. Int., 2018, 44, 8643.

[48]

Khattab RM, El-Rafei AM, Zawrah MF. In-situ formation of sintered cordierite-mullite nano-micro composites by utilizing of waste silica fume. Mater. Res. Bull., 2012, 47, 2662.

[49]

Zawrah MF. Effect of Cr2O3 on the properties of spinel/mullite composites. Brit. Ceram. Trans., 2003, 102, 114.

[50]

M.F. Zawrah and N.M. Khalil, Processing, sintering and properties of CaZrO3/MgO and ZrO2/MgO composites, InterCeram, 57(2008), No. 2, p. S/1.

[51]

Awaad M, Zawrah MF, Khalil NM. In situ formation of zirconia-alumina-spinel-mullite ceramic composites. Ceram. Int., 2008, 34, 429.

[52]

El-kheshen AA, Zawrah MF, Awaad M. Densification, phase composition and properties of borosilicate glass composites containing nano-alumina and titania. J. Mater. Sci.: Mater. Electron., 2009, 20, 637

[53]

Ficai A, Andronescu E, Voicu G, Ghitulica C, Vasile BS, Ficai D, Trandafir V. Self assembled collagen/hydroxyapatite composite materials. Chem. Eng. J., 2010, 160, 794.

[54]

Zhang L, Tang P, Xu M, Zhang W, Chai W, Wang Y. Effects of crystalline phase on the biological properties of collagen-hydroxyapatite composites. Acta Biomater., 2010, 6, 2189.

[55]

Yin J, Deng BL. Polymer-matrix nanocomposite membranes for water treatment. J. Membr. Sci., 2015, 479, 256.

[56]

Wang XC, Chang J, Wu CT. Bioactive inorganic/organic nanocomposites for wound healing. Appl. Mater. Today, 2018, 11, 308.

[57]

Smirnov A, Bartolomé JF. Microstructure and mechanical properties of ZrO2 ceramics toughened by 5-20vol% Ta metallic particles fabricated by pressureless sintering. Ceram. Int., 2014, 40, 1829.

[58]

Zima A. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength. Spectrochim. Acta, 2018, 193, 175.

[59]

Basutkar AG, Kolekar A. A review on properties and applications of ceramic matrix composites. IJRSI, 2015, II, 28

[60]

Silvestre J, Silvestre N, de Brito J. An overview on the improvement of mechanical properties of ceramics nanocomposites. J. Nanomater., 2015, 2015, 3.

[61]

Pecharromán C, Beltrán JI, Esteban-Betegón F, López-Esteban S, Bartolomé JF, Muňoz MC, Moya JS. Zirconia/nickel interfaces in micro- and nanocomposites. Z. Metallkd., 2005, 96, 507.

[62]

Moya JS, López-Esteban S, Pecharromán C, Bartolomé JF, Torrecillas R. Mechanically stable monoclinic zirconia-nickel composite. J. Am. Ceram. Soc., 2002, 85, 2119.

[63]

Jung YG, Choi S, Oh CS, Paik UG. Residual stress and thermal properties of zirconia/metal (nickel and stainless steel 304) functionally graded materials fabricated by hot pressing. J. Mater. Sci., 1997, 32, 3841.

[64]

Zawrah MF. Synthesis and characterization of WC-Co nanocomposites by novel chemical method. Ceram. Int., 2007, 33, 155.

[65]

Zawrah MF, Zayed MA, Ali MRK. Synthesis and characterization of SiC and SiC/Si3N4 composite nano powders from waste material. J. Hazard. Mater., 2012, 227–228, 250.

[66]

Suri J, Shaw LL, Zawrah MF. Tailoring the relative Si3N4 and SiC contents in Si3N4/SiC nanopowders through carbothermic reduction and nitridation of silica fume. Int. J. Appl. Ceram. Technol., 2011, 9, 291.

[67]

Suri J, Shaw LL, Zawrah MF. Synthesis of carbon-free Si3N4/SiC nanopowders using silica fume. Ceram. Int., 2011, 37, 3477.

[68]

Zawrah MF, Khattab RM, El-Kheshen AA, El Fadaly E. Sintering and properties of borosilicate glass/Li-Na-K-feldspar composites for electronic applications. Ceram. Int., 2017, 43, 15068.

[69]

Zawrah MFM, El-Kheshen AA. Characterization of borosilicate glass matrix composites reinforced with SiC or ZrO2. Brit. Ceram. Trans., 2004, 103, 165.

[70]

Zawrah MF, Aly MH. In-situ formation of Al2O3-SiC-mullite from Al matrix composites. Ceram. Int., 2006, 32, 21.

[71]

Yamada Y, Kawasaki A, Taya M, Watanabe R. Effect of debonding at the phase interface on Young's modulus in sintered PSZ/stainless steel composites. Mater. Trans., JIM, 1994, 35, 814.

[72]

Nawa M, Yamazaki K, Sekino T, Niihara K. Micro-structure and mechanical properties of 3Y-TZP/Mo nano-composites-processing a novel interpenetrated intragranular microstructure. J. Mater. Sci., 1996, 31, 2849.

[73]

López-Esteban S, Bartolomé JF, Pecharromán C, Moya JS. Zirconia/stainless-steel continuous functionally graded material. J. Eur. Ceram. Soc., 2002, 22, 2799.

[74]

López-Esteban S, Bartolomé JF, Moya JS, Tanimoto T. Mechanical performance of 3Y-TZP/Ni composites: tensile, bending, and uniaxial fatigue tests. J. Mater. Res., 2002, 17, 1592.

[75]

Taha MA, Elkomy GM, Abo Mostafa H, Gouda ES. Effect of ZrO2 contents and ageing times on mechanical and electrical properties of Al-4.5 wt.% Cu nanocomposites prepared by mechanical alloying. Mater. Chem. Phys., 2018, 206, 116.

[76]

Taha MA, Nassar AH, Zawrah MF. Improvement of wettability, sinterability, mechanical and electrical properties of Al2O3-Ni nanocomposites prepared by mechanical alloying. Ceram. Int., 2017, 43, 3576.

[77]

Zawrah MF, Essawy RA, Zayed HA, Fattah AHA, Taha MA. Mechanical alloying, sintering and characterization of Al2O3-20wt%-Cu nanocomposite. Ceram. Int., 2014, 40, 31.

[78]

Honjo K. Fracture toughness of PAN-based carbon fibres estimated from strength-mirror size relation. Carbon, 2003, 41, 979.

[79]

Yang YC, Ramirez C, Wang X, Guo ZX, Tokranov A, Zhou RQ, Szlufarska I, Lou J, Sheldon BW. Impact on carbon nanotube defects on fracture mechanisms in ceramic nanocomposites. Carbon, 2017, 115, 402.

[80]

Koichi N. New design concept of structural ceramics/ceramic nanocomposites. J. Ceram. Soc. Jpn., 1991, 99, 974.

[81]

Jeong YK, Niihara K. Microstructure and properties of alumina-silicon carbide nanocomposites fabricated by pressureless sintering and post hot-isostatic pressing. Trans. Nonferrous Met. Soc., 2011, 21, 1.

[82]

Yoshimura M, Ohji T, Sando M, Choa YH, Sekino T, Niihara K. Oxidation-induced strengthening and toughening behavior in micro-and nano-composites of Y2O3/SiC system. Mater. Lett., 1998, 35, 139.

[83]

Yang JF, Ohii T, Sekino T, Li CL, Niihara K. Phase transformation, microstructure and mechanical properties of Si3N4/SiC composite. J. Eur. Ceram. Soc., 2001, 21, 2179.

[84]

Palmero P. Structural ceramic nanocomposites: A review of properties and powders' synthesis methods. Nanomaterials, 2015, 5, 656.

[85]

Venkatesan J, Kim SK. Nano-hydroxyapatite composite biomaterials for bone tissue engineering— a review. J. Biomed. Nanotechnol., 2014, 10, 3124.

[86]

Mansur HS, Costa HS. Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chem. Eng. J., 2008, 137, 72.

[87]

Liu JL, Miao XG. Sol-gel derived bioglass as a coating material for porous alumina scaffolds. Ceram. Int., 2004, 30, 1781.

[88]

Haghshenas M. Mechanical characteristics of biodegradable magnesium matrix composites: A review. J. Magnesium Alloys, 2017, 5, 189.

[89]

Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L. Biodegradable materials and metallic implants-a review. J. Funct. Biomater., 2017, 8, 44.

[90]

Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater. Sci. Eng. R, 2014, 77, 1.

[91]

Chandrasekar A, Sagadevan S, Dakshnamoorthy A. Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. Int. J. Phys. Sci., 2013, 8, 1639

[92]

Khalil EMA, Youness RA, Amer MS, Taha MA. Mechanical properties, in vitro and in vivo bioactivity assessment of Na2O-CaO-P2O5-B2O3-SiO2 glass-ceramics. Ceram. Int., 2018, 44, 7867.

[93]

Youness RA, Taha MA, Ibrahim M, El-Kheshen A. FTIR spectral characterization, mechanical properties and antimicrobial properties of La-doped phosphate-based bioactive glasses. Silicon, 2018, 10, 1151.

[94]

Youness RA, Taha MA, El-Kheshen AA, Ibrahim M. Influence of the addition of carbonated hydroxyapatite and selenium dioxide on mechanical properties and in vitro bioactivity of borosilicate inert glass. Ceram. Int., 2018, 44, 20677.

[95]

Abo-Naf SM, Khalil ESM, El-Sayed ESM, Zayed H, Youness RA. In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na2O-CaO-B2O3-P2O5 glasses. Spectrochim. Acta A, 2015, 144, 88.

[96]

Youness RA, Taha MA, Ibrahim M. In vitro bioactivity, physical and mechanical properties of carbonated-fluoroapatite during mechanochemical synthesis. Ceram. Int., 2018, 44, 21323.

[97]

Jagadale PN, Kulal SR, Joshi MG, Jagtap PP, Khetre SM, Bamane SR. Synthesis and characterization of nanostructured CaSiO3 biomaterial. Mater. Sci.-Poland, 2013, 31, 269.

[98]

Oonishi H, Hench LL, Wilson J, Suqihara F, Tsuji E, Matsuura M, Kin S, Yamamoto T, Mizokawa S. Quantitative comparison of bone growth of bone growth behavior in granules of bioglass, A-W glass-ceramics, and hydroxyapatite. J. Biomed. Mater. Res., 2000, 51, 37.

[99]

Refaat A, Youness RA, Taha MA, Ibrahim M. Effect of zinc oxide on the electronic properties of carbonated hydroxyapatite. J. Mol. Struct., 2017, 1147, 148.

[100]

Orlovskii VP, Komlev VS, Barinov SM. Hydroxyapatite and hydroxyapatite-based ceramics. Inorg. Mater., 2002, 38, 973.

[101]

Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260, 920.

[102]

Christenson EM, Anseth KS, van den Beucken Jeroen JJP, Chan CK, Ercan B, Jansen JA. Nanobiomaterial applications in orthopaedics. J. Orthop. Res., 2007, 25, 11.

[103]

Dorozhkin SV. Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomatter, 2011, 1, 3.

[104]

Komlev VS, Barinov SM, Orlovskii VP, Kurdyumov SG. Porous ceramic granules of hydroxyapatite. Refract. Ind. Ceram., 2001, 42, 195.

[105]

Akindoyo JO, Beg MDH, Ghazali S, Heim HP. Impact modified PLA-hydroxyapatite compo-sites-thermo-mechanical properties. Composites Part A, 2018, 107, 326.

[106]

Gong M, Zhao Q, Dai LM, Li YY, Jiang TS. Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties. J. Asian Ceram. Soc., 2017, 5, 160.

[107]

Maca K, Trunec M, Chmelik R. Processing and properties of fine-grained transparent MgAl2O4 ceramics. Ceram. Silik., 2017, 51, 94

[108]

Vladescu A, Padmanabhan SC, Ak Azem F, Braic M, Titorencu I, Birlik I, Morris MA, Braic V. Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite. J. Mech. Behav. Biomed. Mater., 2016, 63, 314.

[109]

Heidari F, Razavi M, Bahrololoom ME, Bazargan-Lari R, Vashaee D, Kotturi H, Tayebi L. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications. Mater. Sci. Eng. C, 2016, 65, 338.

[110]

Vladescu A, Birlik I, Baric V, Toparli M, Celik E, Ak Azem F. Enhancement of the mechanical properties of hydroxyapatite by SiC addition. J. Mech. Behav. Biomed. Mater., 2014, 40, 362.

[111]

Roeder RK, Converse GL, Kane RJ, Yue W. Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes. JOM, 2008, 60, 38.

[112]

Upadhyaya GS. Powder Metallurgy Technology, 2002, UK, Cambridge International Science Publishing

[113]

Donachie MJ, Burr MF. Effects of pressing on metal powders. JOM, 1963, 15, 849.

[114]

Gómes SY, Hotza D. Predicting powder densification during sintering. J. Eur. Ceram. Soc., 2018, 38, 1736.

[115]

Spusta T, Svoboda J, Maca K. Study of pore closure during pressure-less sintering of advanced oxide ceramics. Acta Mater., 2016, 115, 347.

[116]

Messing GL, Stevenson AJ. Materials science: toward pore-free ceramics. Science, 2008, 322, 383.

[117]

Campbell CT, Parker SC, Starr DE. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science, 2002, 298, 811.

[118]

Herring C. Effect of change of scale on sintering phenomena. J. Appl. Phys., 1950, 21, 301.

[119]

Pan J. Modeling sintering at different length scales. Int. Mater. Rev., 2003, 48, 69.

[120]

Yeh TS, Scaks MD. Low-temperature sintering of aluminum oxide. J. Am. Ceram. Soc., 1988, 71, 841.

[121]

Barringer EA, Bowman HK. Formation, packing, and sintering of mono-dispersed TiO2 powders. J. Am. Ceram. Soc., 1982, 65, 199.

[122]

X. Kuang, G. Carotenuto, and L. Nicolais, A review of ceramic sintering and suggestions on reducing sintering temperatures, Adv. Perform. Mater., 4(1997), No. 3, p, 257.

[123]

He Z, Ma J. Grain growth rate constant of hot-pressed alumina ceramics. Mater. Lett., 2000, 44, 14.

[124]

Liao SC, Chen YJ, Kear BH, Mayo WE. High pressure/low temperature sintering of nanocrystalline alumina. Nanostruct. Mater., 1998, 10, 1063.

[125]

Gao L, Hong JS, Miyamoto H, Torre SDDL. Bending strength and micro-structure of Al2O3 ceramics densified by spark plasma sintering. J. Eur. Ceram. Soc., 2000, 20, 2149.

[126]

Zhou Y, Hirao K, Yamauchi Y, Kanzaki S. Densification and grain growth in pulse electric current sintering of alumina. J. Eur. Ceram. Soc., 2004, 24, 345.

[127]

Lóh NJ, Simăo L, Faller CA, de Noni A Jr Montedo ORK. A review of two-step sintering for ceramics. Ceram. Int., 2016, 42, 12556.

[128]

Spusta T, Svoboda J, Maca K. Study of pore closure during pressure-less sintering of advanced oxide ceramics. Acta Mater., 2016, 115, 347.

[129]

Krell A, Klimke J, Hutzler T. Advanced spinel and sub-μm Al2O3 for transparent armor applications. J. Eur. Ceram. Soc., 2009, 29, 275.

[130]

Mayo MJ. Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev., 1996, 41, 85.

[131]

Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L. Fabrication, properties and applications of dense hydroxyapatite: a review. J. Funct. Biomater., 2015, 6, 1099.

[132]

Ji S, Gu Q, Xia B. Porosity dependence of mechanical properties of solid materials. J. Mater. Sci., 2006, 41, 1757.

[133]

Taha MA, Elkomy GM, Mostafa HA, Gouda ES. Effect of ZrO2 contents and ageing times on mechanical and electrical properties of Al-4.5wt% Cu nanocomposites prepared by mechanical alloying. Mater. Chem. Phys., 2018, 206, 116.

[134]

Taha MA, Nassar AH, Zawrah MF. Effect of milling parameters on sinterability, mechanical properties of Cu-4wt% ZrO2 nanocomposite. Mater. Chem. Phys., 2016, 181, 26.

[135]

Zawrah MF, Zayed HA, Essawy RA, Nassar AH, Taha MA. Preparation by mechanical alloying, characterization and sintering of Cu-20wt% Al2O3 nanocomposites. Mater. Des., 2013, 46, 485.

[136]

I.Y. Guzman, Reaction sintering and its practical application, Glass Ceram., 50(1993), No. 9–10, p, 412.

[137]

Encinas-Romero MA, Peralta-Haley J, Valenzuela-García JL. Synthesis and structural characterization of hydroxyapatite-wollastonite biocomposites, produced by an alternative sol-gel route. J. Biomater. Nanobiotechnol., 2013, 4, 327.

[138]

Lala S, Brahmachari S, Das PK, Das D, Kar T, Pradhan SK. Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time. Mater. Sci. Eng. C, 2014, 42, 647.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/