Synthesis and characterization of the nanostructured solid solution with extended solubility of graphite in nickel by mechanical alloying
Nitika Kundan , Biswajit Parida , Anup Kumar Keshri , Prathvi Raj Soni
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (8) : 1031 -1037.
Synthesis and characterization of the nanostructured solid solution with extended solubility of graphite in nickel by mechanical alloying
In the present work, mechanical alloying of a powder mixture of nickel and graphite (up to 15wt%) was carried out in an attrition mill under a nitrogen atmosphere. The as-milled powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The 15wt% graphite dissolved into the nickel (exceeding the negligible solid solubility in the nickel-carbon system), thereby forming a supersaturated solid solution of graphite in a nickel matrix. The dissolved graphite occupied interstitial positions along the dislocation edges and at the grain-boundary regions. A three-step graphite dissolution mechanism has been proposed. The associated changes in the nickel lattice, such as changes in the crystallite size (62 to 43 nm), lattice strain (0.12% to 0.3%), and lattice parameter (0.3533 to 0.3586 nm), which led to the formation of the supersaturated solid solution, were also evaluated and discussed.
Ni-C system / mechanical alloying / supersaturated solid solution / nanostructured powder
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
M. Mehrabi, P. Parvin, A. Reyhani, and S.Z. Mortazavi, Hydrogen storage in multi-walled carbon nanotubes decorated with palladium nanoparticles using laser ablation/chemical reduction methods, Mater. Res. Express, 4(2017), No. 9, art. No. 095030. |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
/
| 〈 |
|
〉 |