Corrosion resistance evaluation of highly dispersed MgO-MgAl2O4-ZrO2 composite and analysis of its corrosion mechanism: A chromium-free refractory for RH refining kilns

Yi-nan Shen , Yi Xing , Peng Jiang , Yong Li , Wen-dong Xue , Guo-xiang Yin , Xue-qin Hong

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (8) : 1038 -1046.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (8) : 1038 -1046. DOI: 10.1007/s12613-019-1807-8
Article

Corrosion resistance evaluation of highly dispersed MgO-MgAl2O4-ZrO2 composite and analysis of its corrosion mechanism: A chromium-free refractory for RH refining kilns

Author information +
History +
PDF

Abstract

The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH (Ruhrstahl-Hereaeus) slags. The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite, MgO-ZrO2 composite, and MgO-MgAl2O4-ZrO2 composite. On the basis of the microstructural analysis and mechanisms calculations, the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure, which helps protect the high activity of ZrO2. When in contact with the slag, ZrO2 reacts with CaO to form the stable phase CaZrO3, which protects MgAl2O4 against corrosion, thereby enhancing the corrosion resistance of the composite.

Keywords

highly dispersed MgO-MgAl2O4-ZrO2 composite material / RH refining / chrome-free refractory / slag corrosion resistance

Cite this article

Download citation ▾
Yi-nan Shen, Yi Xing, Peng Jiang, Yong Li, Wen-dong Xue, Guo-xiang Yin, Xue-qin Hong. Corrosion resistance evaluation of highly dispersed MgO-MgAl2O4-ZrO2 composite and analysis of its corrosion mechanism: A chromium-free refractory for RH refining kilns. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(8): 1038-1046 DOI:10.1007/s12613-019-1807-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aksel C, Rand B, Riley FL, Warren PD. Mechanical properties of magnesia-spinel composites. J. Eur. Ceram. Soc., 2002, 22(5): 745.

[2]

Khalil NM. Recent developments in magnesia-spinel refractory composites, Part 1. InterCeram, 2008, 57(6): 417.

[3]

Khalil NM. Recent developments in magnesia-spinel refractory composites, Part 2. InterCeram, 2009, 58(1): 20.

[4]

Crites MD, Karakus M, Schlesinger ME, Somerville M, Sun SY. Interaction of chrome-free refractories with copper smelting and converting slags. Can. Metall. Q., 2000, 39(2): 129.

[5]

Sun YH, Zeng YN, Xu R, Cai KK. Formation mechanism and control of MgO-Al2O3 inclusions in non-oriented silicon steel. Int. J. Miner. Metall. Mater., 2014, 21(11): 1068.

[6]

Jiang P, Yin GX, Yan MW, Sun JL, Li B, Li Y. A new synthetic route to MgO-MgAl2O4-ZrO2 highly dispersed composite material through formation of Mg5Al24Zr17O12 metastable phase: Synthesis and physical properties. Int. J. Miner. Metall. Mater., 2017, 24(3): 332.

[7]

Zhao SX, Cai BL, Sun HG, Wang G, Li HX, Song XY. Thermodynamic simulation of the effect of slag chemistry on the corrosion behavior of alumina-chromia refractory. Int. J. Miner. Metall. Mater, 2016, 23(12): 1458.

[8]

Guo J, Cheng SS, Guo HJ, Mei YG. Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium. Int. J. Miner. Metall. Mater., 2018, 25(3): 280.

[9]

Mohapatra D, Sarkar D. Preparation of MgO-MgAl2O4 composite for refractory application. J. Mater. Process. Technol., 2007, 189(1–3): 279.

[10]

Aksel C, Warren PD. Work of fracture and fracture surface energy of magnesia-spinel composites. Compos. Sci. Technol., 2003, 63(10): 1433.

[11]

Bruni YL, Garrido LB, Aglietti EF. Reaction and phases from monoclinic zirconia and calcium aluminate cement at high temperatures. Ceram. Int., 2012, 38(5): 4237.

[12]

Ceylantekin R, Aksel C. Improvements on corrosion behaviours of MgO-spinel composite refractories by addition of ZrSiO4. J. Eur. Ceram. Soc., 2012, 32(4): 727.

[13]

Aksel C, Warren PD, Riley FL. Fracture behavior of magnesia and Magnesia-spinel composites before and after thermal shock. J. Eur. Ceram. Soc., 2004, 24(8): 2407.

[14]

Szczerba J. Chemical corrosion of basic refractories by cement kiln materials. Ceram. Int., 2010, 36(6): 1877.

[15]

Guo Z, Palco S, Rigaud M. Reaction characteristics of magnesia-spinel refractories with cement clinker. Int. J. Appl. Ceram. Technol., 2005, 2(4): 327.

[16]

Yan MW, Li Y, Yin GX, Tong SH, Chen JH. Synthesis and characterization of a MgO-MgAl2O4-ZrO2, composite with a continuous network microstructure. Ceram. Int., 2017, 43(8): 5914.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/