Atomic modeling for the initial stage of chromium passivation

Li-nan Zhang , Xi-lin Xiong , Yu Yan , Ke-wei Gao , Li-jie Qiao , Yan-jing Su

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (6) : 732 -739.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (6) : 732 -739. DOI: 10.1007/s12613-019-1803-z
Article

Atomic modeling for the initial stage of chromium passivation

Author information +
History +
PDF

Abstract

The well-known anti-corrosive property of stainless steels is largely attributed to the addition of Cr, which can assist in forming an inert film on the corroding surface. To maximize the corrosion-resistant ability of Cr, a thorough study dealing with the passivation behaviors of this metal, including the structure and composition of the passive film as well as related reaction mechanisms, is required. Here, continuous electrochemical adsorptions of OH-groups of water molecules onto Cr terraces in acid solutions are investigated using DFT methods. Different models with various surface conditions are applied. Passivation is found to begin in the active region, and a fully coated surface mainly with oxide is likely to be the starting point of the passive region. The calculated limiting potentials are in reasonable agreement with passivation potentials observed via experiment.

Keywords

chromium / acid solutions / passive films / interfaces / modeling studies

Cite this article

Download citation ▾
Li-nan Zhang, Xi-lin Xiong, Yu Yan, Ke-wei Gao, Li-jie Qiao, Yan-jing Su. Atomic modeling for the initial stage of chromium passivation. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(6): 732-739 DOI:10.1007/s12613-019-1803-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li XG, Zhang DW, Liu ZY, Li Z, Du CW, Dong CF. Materials science: share corrosion data. Nature, 2015, 527, 441.

[2]

Ahmad N, MacDiarmid AG. Inhibition of corrosion of steels with the exploitation of conducting polymers. Synth. Met., 1996, 78(2): 103.

[3]

Misawa T, Asami K, Hashimoto K, Shimodaira S. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel. Corros. Sci., 1974, 14(4): 279.

[4]

Stratmann M, Bohnenkamp K, Ramchandran T. The influence of copper upon the atmospheric corrosion of iron. Corros. Sci., 1987, 27(9): 905.

[5]

Nishimura T, Katayama H, Noda K, Kodama T. Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments. Corros. Sci., 2000, 42(9): 1611.

[6]

Ujiro T, Satoh S, Staehle RW, Smyrl WH. Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media. Corros. Sci., 2001, 43(11): 2185.

[7]

Choi YS, Shim JJ, Kim JG. Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water. J. Alloys Compd., 2005, 391(1–2): 162.

[8]

Pardo A, Merino MC, Coy AE, Viejo F, Carboneras M, Arrabal R. Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels. Acta Mater., 2007, 55(7): 2239.

[9]

Hara N, Sugimoto K. The study of the passivation films on Fe-Cr alloys by modulation spectroscopy. J. Electrochem. Soc., 1979, 126(8): 1328.

[10]

Keddam M, Mattos OR, Takenouti H. Mechanism of anodic dissolution of iron-chromium alloys investigated by electrode impedances—I. Experimental results and reaction model. Electrochim. Acta, 1986, 31(9): 1147.

[11]

Marcus P, Grimal JM. The anodic dissolution and passivation of NiCrFe alloys studied by ESCA. Corros. Sci., 1992, 33(5): 805.

[12]

Wang CS, Tsai CY, Chao CG, Liu TF. Effect of chromium content on corrosion behaviors of Fe-9Al-30Mn-(3,5,6.5,8)Cr-1C alloys. Mater Trans., 2007, 48(4): 2973.

[13]

Jegdić B, Dražić DM, Popić JP. Open circuit potentials of metallic chromium and austenitic 304 stainless steel in aqueous sulphuric acid solution and the influence of chloride ions on them. Corros. Sci., 2008, 50(5): 1235.

[14]

Sugimoto K, Matsuda S. Passive and transpassive films on Fe-Cr alloys in acid and neutral solutions. Mater. Sci. Eng., 1980, 42, 181.

[15]

Olefjord I. The passive state of stainless steels. Mater. Sci. Eng., 1980, 42, 161.

[16]

Olefjord I, Brox B, Jelvestam U. Surface composition of stainless steels during anodic dissolution and passivation studied by ESCA. J. Electrochem. Soc., 1985, 132(12): 2854.

[17]

Dobbelaar JAL, de Wit JHW. Impedance measurements and analysis of the corrosion of chromium. J. Electrochem. Soc., 1990, 137(7): 2038.

[18]

Metikoš-Huković M, Babić R. Passivation and corrosion behaviours of cobalt and cobalt-chromium-molybdenum alloy. Corros. Sci., 2007, 49(9): 3570.

[19]

Bojinov M, Fabricius G, Laitinen T, Saario T, Sundholm G. Conduction mechanism of the anodic film on chromium in acidic sulphate solutions. Electrochim. Acta, 1998, 44(2–3): 247.

[20]

Uhlig HH. Fundamental factors in corrosion control. Corrosion, 1947, 4(3): 173.

[21]

Uhlig HH. Passivity in metals and alloys. Corros. Sci., 1979, 19(7): 777.

[22]

Kolotyrkin VM. Electrochemical behaviour and anodic passivity mechanism of certain metals in electrolyte solutions. Z. Elektrochem., 1958, 62(6–7): 664.

[23]

Armstrong RD, Henderson M, Thirsk HR. The impedance of chromium in the active-passive transition. J. Electroanal. Chem. Interfacial Electrochem., 1972, 35(1): 119.

[24]

El-Basiouny MS, Haruyama S. The polarization behaviour of chromium in acidic sulphate solutions. Corros. Sci., 1977, 17(5): 405.

[25]

Okuyama M, Kawakami M, Ito K. Anodic dissolution of chromium in acidic sulphate solutions. Electrochim. Acta, 1985, 30(6): 757.

[26]

Björnkvist L, Olefjord I. The electrochemistry of chromium in acidic chloride solutions: Anodic dissolution and passivation. Corros. Sci., 1991, 32(2): 231.

[27]

Seo M, Saito R, Sato N. Ellipsometry and auger analysis of chromium surfaces passivated in acidic and neutral aqueous solutions. J. Electrochem. Soc., 1980, 127(9): 1909.

[28]

Moffat TP, Latanision RM. An electrochemical and X-Ray photoelectron spectroscopy study of the passive state of chromium. J. Electrochem. Soc., 1992, 139(7): 1869.

[29]

Stypula B, Banaś J. Passivity of chromium in sulphuric acid solutions. Electrochim. Acta, 1993, 38(15): 2309.

[30]

Maurice V, Yang WP, Marcus P. XPS and STM Investigation of the passive film formed on Cr(110) single-crystal surfaces. J. Electrochem. Soc., 1994, 141(11): 3016.

[31]

Zuili D, Maurice V, Marcus P. In situ scanning tunneling microscopy study of the structure of the hydroxylated anodic oxide film formed on Cr(110) single-crystal surfaces. J. Phys. Chem. B, 1999, 103(37): 7896.

[32]

Ma H, Chen XQ, Li RH, Wang SL, Dong JH, Ke W. First-principles modeling of anisotropic anodic dissolution of metals and alloys in corrosive environments. Acta Mater., 2017, 130, 137.

[33]

Sato N. An overview on the passivity of metals. Corros. Sci., 1990, 31, 1.

[34]

Lv JL, Liang TX. The effect of passivated potential on the passive films formed on pure chromium in borate buffer solution. Surf. Interface Anal., 2017, 49(6): 533.

[35]

Olsson CO, Landolt D. Passive films on stainless steels—chemistry, structure and growth. Electrochim. Acta, 2003, 48(9): 1093.

[36]

Dobbelaar JAL, de Wit JHW. The corrosion behavior of polycrystalline and single crystal chromium a revised model. J. Electrochem. Soc., 1992, 139(3): 716.

[37]

Caplan D, Sproule GI. Effect of oxide grain structure on the high-temperature oxidation of Cr. Oxid. Met., 1975, 9(5): 459.

[38]

Liu M, Qiu D, Zhao MC, Song GL, Atrens A. The effect of crystallographic orientation on the active corrosion of pure magnesium. Scripta Mater., 2008, 58(5): 421.

[39]

Song GL, Xu ZQ. Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution. Corros. Sci., 2012, 54, 97.

[40]

Chen LD, Nørskov JK, Luntz AC. Al-Air batteries: Fundamental thermodynamic limitations from first-principles theory. J. Phys. Chem. Lett., 2015, 6(1): 175.

[41]

Chen LD, Nørskov JK, Luntz AC. Theoretical limits to the anode potential in aqueous Mg-air batteries. J. Phys. Chem. C, 2015, 119(34): 19660.

[42]

J.S. Hummelshoj, A.C. Luntz, and J.K. Nørskov, Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry, J. Chem. Phys., 138(2013), art. No. 034703.

[43]

Viswanathan V, Norskov JK, Speidel A, Scheffler R, Gowda S, Luntz AC. Li-O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory. J. Phys. Chem. Lett., 2013, 4(4): 556.

[44]

Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jønsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B, 2004, 108(46): 17886.

[45]

Rossmeisl J, Nørskov JK, Taylor CD, Janik MJ, Neurock M. Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J. Phys. Chem., 2006, 110(43): 21833.

[46]

S. Meng, E.G. Wang, and S.W. Gao, Water adsorption on metal surfaces: a general picture from density functional theory studies, Phys. Rev. B, 69(2004), art. No. 195404.

[47]

Michaelides A, Morgenstern K. Ice nanoclusters at hydrophobic metal surfaces. Nat. Mater., 2007, 6, 597.

[48]

Karlberg GS, Rossmeisl J, Nørskov JK. Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Phys. Chem. Chem. Phys., 2007, 9(37): 5158.

[49]

J. Phys. Condens. Matter, 2009, 21(39) art. No. 395502

[50]

Bahn SR, Jacobsen KW. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng., 2002, 4(3): 56.

[51]

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990, 41, 7892.

[52]

Hammer B, Hansen LB, Nørskov JK. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B, 1999, 59, 7413.

[53]

Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13, 5188.

[54]

Siahrostami S, Tripkovic V, Lundgaard KT, Jensen KE, Hansen HA, Hummelshøj JS, Mýrdal JSG, Vegge T, Nørskov JK, Rossmeisl J. First principles investigation of zinc-anode dissolution in zinc-air batteries. Phys. Chem. Chem. Phys., 2013, 15(17): 6416.

[55]

Hansen HA, Rossmeisl J, Nørskov JK. Surface pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys., 2008, 10, 3722.

[56]

Bratsch SG. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data, 1989, 18, 1.

[57]

Nørskov JK, Studt F, Abild-Pedersen F, Bligaard T. Fundamental Concepts in Heterogeneous Catalysis, 2014, USA, John Wiley & Sons

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/