Influence of nickel addition on the microstructure and mechanical properties of Al2O3-5vol%ZrO2 ceramic composites prepared via precipitation method

Betül Kafkaslıoğlu Yıldız , Hüseyin Yılmaz , Yahya Kemal Tür

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (7) : 908 -914.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (7) : 908 -914. DOI: 10.1007/s12613-019-1792-y
Article

Influence of nickel addition on the microstructure and mechanical properties of Al2O3-5vol%ZrO2 ceramic composites prepared via precipitation method

Author information +
History +
PDF

Abstract

The aim of this work was to investigate the microstructure and mechanical properties of 1 vol%-Ni-added yttria-stabilized zirconia (YSZ) toughened alumina composites. First, Ni powders were heterogeneously precipitated in an alumina-zirconia powder mixture suspended in water; the prepared specimens were then pressureless sintered at 1550°C/2 h in a 90vol%Ar/10vol% H2 atmosphere. The structure of phases and microstructure of the composites were characterized by X-ray diffraction and scanning electron microscopy, respectively. Mechanical characterization of the specimens was carried out through Vickers hardness, Vickers indentation toughness, and three-point flexural bending tests. The fine Ni particles were homogeneously dispersed throughout the alumina matrix because of the employed processing method. Furthermore, hardness and toughness values were found to increase by 8% and 50%, respectively, with Ni addition, whereas the relative densities and flexural strength values were found to remain unchanged.

Keywords

alumina / zirconia / ceramic matrix / microstructure / hardness / strength / toughness

Cite this article

Download citation ▾
Betül Kafkaslıoğlu Yıldız, Hüseyin Yılmaz, Yahya Kemal Tür. Influence of nickel addition on the microstructure and mechanical properties of Al2O3-5vol%ZrO2 ceramic composites prepared via precipitation method. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(7): 908-914 DOI:10.1007/s12613-019-1792-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arab A, Ahmad ZA, Ahmad R. Effects of yttria stabilized zirconia (3Y-TZP) percentages on the ZTA dynamic mechanical properties. Int. J. Refract. Met. Hard Mater., 2015, 50, 157.

[2]

Zhang XF, Li YC. On the comparison of the ballistic performance of 10% zirconia toughened alumina and 95% alumina ceramic target. Mater. Des., 2010, 31, 1945.

[3]

Vargas-Gonzalez L, Speyer RF, Campbell J. Flexural strength, fracture toughness, and hardness of silicon carbide and boron carbide armor ceramics. Int. J. Appl. Ceram. Technol., 2010, 7, 643.

[4]

Belenky A, Rttel D. Static and dynamic flexural strength of 99.5% alumina: Relation to porosity. Mech. Mater., 2012, 48, 43.

[5]

Medvedovski E. Alumina-mullite ceramics for structural applications. Ceram. Int., 2006, 32, 369.

[6]

Nastic A, Merati A, Bielawski M, Bolduc M, Fakolujo O, Nganbe M. Instrumented and Vickers indentation for the characterization of stiffness, hardness and toughness of zirconia toughened A1203 and SiC armor. J. Mater. Sci. Technol., 2015, 31, 773.

[7]

Karandikar PG, Evans G, Wong S, Aghajanian MK, Sennett M. A review of ceramics for armor applications. Ceram. Eng. Sci. Proc., 2009, 29, 163.

[8]

Medvedovski E. Ballistic performance of armour ceramics: Influence of design and structure. Part 1. Ceram. Int., 2010, 36, 2103.

[9]

Danilenko I, Lasko G, Brykhanova I, Burkhovetski V, Ahkhozov L. The peculiarities of structure formation and properties of zirconia-based nanocomposites with addition of A1203 and NiO. Nanoscale Res. Lett., 2017, 12, 125.

[10]

Tuan WH, Chen RZ, Wang TC, Cheng CH, Kuo PS. Mechanical properties of Al2O3/ZrO2 composites. J. Eur. Ceram. Soc., 2002, 22, 2827.

[11]

Ma WM, Wen L, Guan RG, Sun XD, Li XK. Sintering densification, microstructure and transformation behavior of Al2O3/ZrO2(Y2O3) composites. Mater. Sci. Eng. A, 2008, 477, 100.

[12]

Calambás HL, Pulgarin Albano MP. Sintering, micro-structure and hardness of different alumina-zirconia composites. Ceram. Int, 2014 5289.

[13]

Krell A, Blank P. Grain size dependence of hardness in dense submicrometer alumina. J. Am. Ceram. Soc., 1995, 78, 1118.

[14]

Rejab NA, Lee WK, Sktani ZDI, Ahmad ZA. Hardness and toughness enhancement of CeO2 addition to ZTA ceramics through HIPping technique. Int. J. Refract. Met. Hard Mater., 2017, 69, 60.

[15]

Arab A, Ahmad R, Ahmad ZA. Effect of SrCO3 addition on the dynamic compressive strength of ZTA. Int. J. Miner. Metall. Mater., 2016, 23, 481.

[16]

Hassan AM, Naga SM, Awaad M. Toughening and strengthening of Nb2O5 doped zirconia/alumina (ZTA) composites. Int. J. Refract. Met. Hard Mater., 2015, 48, 338.

[17]

Moya JS, Rodriguez-Suarez T, Lopez-Esteban S, Pe-charroman C, Torrecillas R, Diaz LA, Nygren M. Diamond-like hardening of alumina/Ni nanocomposites. Adv. Eng. Mater., 2007, 9, 898.

[18]

Tuan WH, Liu SM, Ho CJ, Lin CS, Yang TJ, Zhang DM, Fu ZY, Guo JK. Preparation of Al2O3-ZrO2-Ni nanocomposite by pulse electric current and pressureless sintering. J. Eur. Ceram. Soc., 2005, 25, 3125.

[19]

V.G. Karayannis and A.K. Moutsatsou, Synthesis and characterization of nickel-alumina composites from recycled nickel powder, Adv. Mater. Sci. Eng., 2012(2012), art. No. 395612.

[20]

Li GJ, Huang XX, Guo JK. Fabrication and mechanical properties of Al2O3-Ni composite from two different powder mixtures. Mater. Sci. Eng. A, 2003, 352, 23.

[21]

Kafkashoglu B, Tur YK. Pressureless sintering of Al2O3/Ni nanocomposites produced by heterogeneous precipitation method with varying nickel contents. Int. J. Refract. Met. Hard Mater., 2016, 57, 139.

[22]

Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc., 1981, 64, 533.

[23]

Lange FF, Hirlinger MM. Hindrance of grain growth in A12O3 by ZrO2 inclusions. J. Am. Ceram. Soc., 1984, 67, 164.

[24]

Asthana R, Mileiko ST, Sobczak N. Wettability and interface considerations in advanced heat-resistant Ni-base composites. Bull. Pol. Acad. Sci. Tech. Sci., 2006, 54, 147.

[25]

M. Kuntz and R. Krüger, The effect of microstructure and chromia content on the properties of zirconia toughened alumina, Ceram. Int., 44(2018), No. 2. p. 2011.

[26]

Bian HM, Yang Y, Wang Y, Tian W, Jiang HF, Hu ZJ, Yu WM. Effect of microstructure of composite powders on microstructure and properties of microwave sintered alumina matrix ceramics. J. Mater. Sci. Technol., 2013, 29, 429.

[27]

Rodriguez-Suarez T, Bartolome JF, Moya JS. Mechanical and tribological properties of ceramic/metal composites: A review of phenomena spanning from the nanometer to the micrometer length scale. J. Eur. Ceram. Soc., 2012, 32, 3887.

[28]

Pecharroman C, Esteban-Betegon F, Bartolome JF, Richter G, Moya JS. Theoretical model of hardening in zirconia-nickel nanoparticle composites. Nano Lett., 2004, 4, 747.

[29]

Rodriguez-Suarez T, Bartolome JF, Smirnov A, Lopez-Esteban S, Torrecillas R, Moya JS. Sliding wear behavior of alumina/nickel nanocomposites processed by a conventional sintering route. J. Eur. Ceram. Soc., 2011, 31, 1389.

[30]

Tuan WH, Chen JR, Ho CJ. Critical zirconia amount to enhance the strength of alumina. Ceram. Int., 2008, 34, 2129.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/