Friction stir welding of pure magnesium and polypropylene in a lap-joint configuration: Microstructure and mechanical properties

Amirhossein Moghanian , Moslem Paidar , Seyyed Salman Seyedafghahi , Olatunji Oladimeji Ojo

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (6) : 766 -774.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (6) : 766 -774. DOI: 10.1007/s12613-019-1784-y
Article

Friction stir welding of pure magnesium and polypropylene in a lap-joint configuration: Microstructure and mechanical properties

Author information +
History +
PDF

Abstract

A hybrid joint with a satisfactory mixture of pure magnesium and polypropylene (PP) was achieved via friction stir joining (FSW) in a lap-joint configuration. The tool rotational and travel speeds used in this work were 500–700 r/min and 50–100 mm/min, respectively. The mechanical properties and microstructural analysis of the resultant hybrid Mg/PP joint were examined. The results show that the maximum tensile shear strength (22.5 MPa) of the joint was attained at 700 r/min and 75 mm/min due to the optimum percentage fraction of mechanical interlocking (48%) and the presence of magnesium oxide. The interfacial joint center exhibits the maximum microhardness values because of the presence of refined and intertwined Mg fragments and density dislocations in the matrix of the PP. The joint failed via two different modes: interfacial line and weld zone fractures, respectively.

Keywords

welding / microstructure / pure magnesium / polypropylene / rotational speed

Cite this article

Download citation ▾
Amirhossein Moghanian, Moslem Paidar, Seyyed Salman Seyedafghahi, Olatunji Oladimeji Ojo. Friction stir welding of pure magnesium and polypropylene in a lap-joint configuration: Microstructure and mechanical properties. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(6): 766-774 DOI:10.1007/s12613-019-1784-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kah P, Suoranta R, Martikainen J, Magnus C. Techniques for joining dissimilar materials: Metals and polymers. Rev. Adv. Mater. Sci., 2014, 36, 152.

[2]

Huang YX, Meng XC, Wang YH, Xie YM, Zhou L. Joining of aluminum alloy and polymer via friction stir lap welding. J. Mater. Process. Technol., 2018, 257, 148.

[3]

Nagatsuka K, Yoshida S, Tsuchiya A, Nakata K. Direct joining of carbon-fiber-reinforced plastic to an aluminum alloy using friction lap joining. Composites Part B, 2015, 73, 82.

[4]

Mishra RS, Ma ZY. Friction stir welding and processing. Mater. Sci. Eng. R, 2005, 50(1–2): 1.

[5]

Nandan R, Debroy T, Bhadeshia HKDH. Recent advances in friction-stir welding — Process, weldment structure and properties. Prog. Mater. Sci., 2008, 53(6): 980.

[6]

Paidar M, Ojo OO, Moghanian A, Karapuzha AS, Heidarzadeh A. Modified friction stir clinching with protuberance-keyhole levelling: A process for production of welds with high strength. J. Manuf. Processes, 2019, 41, 177.

[7]

Pabandi HK, Jashnani HR, Paidar M. Effect of precipitation hardening heat treatment on mechanical and microstructure features of dissimilar friction stir welded AA2024-T6 and AA6061-T6 alloys. J. Manuf. Processes, 2018, 31, 214.

[8]

Heinz B, Skrotzki B. Characterization of a friction-stir-welded aluminum alloy 6013. Metall. Mater. Trans. B, 2002, 33(3): 489.

[9]

Somasekharan AC, Murr LE. Characterization of complex, solid-state flow and mixing in the friction-stir welding (FSW) of aluminum alloy 6061-T6 to magnesium alloy AZ91D using color metallography. J. Mater. Sci., 2006, 41(16): 5365.

[10]

Schneider JA, Nunes AC Jr. Characterization of plastic flow and resulting microtextures in a friction stir weld. Metall. Mater. Trans. B, 2004, 35(4): 777.

[11]

Kiss Z, Czigány T. Microscopic analysis of the morphology of seams in friction stir welded polypropylene. eXPRESS Polym. Lett., 2012, 6(1): 54.

[12]

Elyasi M, Derazkola HA. Experimental and thermo-mechanical study on FSW of PMMA polymer T-joint. Int. J. Adv. Manuf Technol., 2018, 97(1–4): 1445.

[13]

Derazkola H A, Simchi A. An investigation on the dissimilar friction stir welding of T-joints between AA5754 aluminum alloy and poly(methyl methacrylate). Thin Walled Struct., 2019, 135, 376.

[14]

Sheikh-Ahmad JY, Ali D S, Deveci S, Almaskari F, Jarrar F. Friction stir welding of high density polyethylene-Carbon black composite. J. Mater. Process. Technol., 2019, 264, 402.

[15]

Aliasghari S, Skeldon P, Zhou X, Ghorbani M. Influence of PEO and mechanical keying on the strength of AA 5052 alloy/polypropylene friction stir spot welded joints. Int. J. Adhes. Adhes., 2019, 92, 65.

[16]

Lambiase F, Paoletti A, Grossi V, Di Ilio A. Analysis of loads, temperatures and welds morphology in FSW of polycarbonate. J. Mater. Process. Technol., 2019, 266, 639.

[17]

Amancio-Filho ST, Bueno C, dos Santos JF, Huber N, Hage E Jr. On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures. Mater. Sci. Eng. A, 2011, 528(10–11): 3841.

[18]

Cao X, Shi QY, Liu DM, Feng ZL, Liu Q, Chen GQ. Fabrication of in situ carbon fiber/aluminum composites via friction stir processing: Evaluation of microstructural, mechanical and tribological behaviors. Composites Part B, 2018, 139, 97.

[19]

Shahmiri H, Movahedi M, Kokabi AH. Friction stir lap joining of aluminium alloy to polypropylene sheets. Sci. Technol. Weld. Joining, 2017, 22(2): 120.

[20]

Derazkola HA, Simchi A. Experimental and thermo-mechanical analysis of the effect of tool pin profile on the friction stir welding of poly (methyl methacrylate) sheets. J. Manuf. Processes, 2018, 34, 412.

[21]

Hajideh MR, Farahani M, Alavi SAD, Ramezani NM. Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets. J. Manuf. Processes, 2017, 26, 269.

[22]

Derazkola HA, Fard RK, Khodabakhshi F. Effects of processing parameters on the characteristics of dissimilar friction-stir-welded joints between AA5058 aluminum alloy and PMMA polymer. Weld. World, 2018, 62(1): 117.

[23]

Derazkola HA, Khodabakhshi F, Simchi A. Friction-stir lap-joining of aluminum-magnesium/poly-methyl-methacrylate hybrid structures: thermo-mechanical modelling and experimental feasibility study. Sci. Technol Weld. Join, 2018, 23(1): 35.

[24]

Lambiase F, Paoletti A, Grossi V, Genna S. Improving energy efficiency in friction assisted joining of metals and polymers. J. Mater. Process. Technol., 2017, 250, 379.

[25]

Yusof F, Miyashita Y, Seo N, Mutoh Y, Moshvan R. Utilising friction spot joining for dissimilar joint between aluminium alloy (A5052) and polyethylene terephthalate. Sci. Technol. Weld. Joining, 2012, 17(7): 544.

[26]

Derazkola HA, Elyasi M. The influence of process parameters in friction stir welding of Al-Mg alloy and polycarbonate. J. Manuf. Processes, 2018, 35, 88.

[27]

Khodabakhshi F, Haghshenas M, Sahraeinejad S, Chen J, Shalchi B, Li J, Gerlich AP. Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high-density polyethylene. Mater. Charact., 2014, 98, 73.

[28]

Patel AR, Kotadiya DJ, Kapopara JM, Dalwadi CG, Patel NP, Rana HG. Investigation of mechanical properties for hybrid joint of aluminium to polymer using friction stir welding (FSW). Mater. Today: Proc., 2018, 5(2): 4242.

[29]

Nakhaei MR, Naderi G, Mostafapour A. Effect of processing parameters on morphology and tensile properties of PP/EPDM/organoclay nanocomposites fabricated by friction stir processing. Iran. Polym. J., 2016, 25(2): 179.

[30]

Patel AR, Dalwadi CG, Rana HG. A Review: dissimilar material joining of metal to polymer using friction stir welding (FSW). Int. J. Sci. Technol. Eng., 2016, 2(10): 702.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/