Microstructure, mechanical properties and formability of friction stir welded dissimilar materials of IF-steel and 6061 Al alloy

Semih Mahmut Aktarer , Dursun Murat Sekban , Tevfik Kucukomeroglu , Gencaga Purcek

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (6) : 722 -731.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (6) : 722 -731. DOI: 10.1007/s12613-019-1783-z
Article

Microstructure, mechanical properties and formability of friction stir welded dissimilar materials of IF-steel and 6061 Al alloy

Author information +
History +
PDF

Abstract

AA 6061 alloy and interstitial-free (IF) steel plates were joined by the friction stir welding (FSW) method, and the microstructure, mechanical properties, and biaxial stretch formability of the friction stir welded (FSWed) parts were investigated. The results indicate that the FSWed parts showed optimum tensile strength during FSW with the 0.4-mm offset position of the tool. The Fe4Al13 intermetallic compound formed in the defect-free intersection of AA 6061 and IF-steel plates during FSW. The hardness of the IF-steel part of the FSWed region increased almost 90% relative to its initial hardness of HV0.2 105. The tensile and yield strengths of FSWed regions were approximately 170 MPa and 145 MPa, respectively. According to the formability tests, the Erichsen Index (EI) of the IF-steel, AA 6061, and the FSWed samples were determined to be 2.9 mm, 1.9 mm, and 2.1 mm, respectively. The EI of the FSWed sample was almost the same as that of the AA 6061 alloy. However, it decreased compared with that of the IF-steel. The force at EI (F EI) was approximately 1180 N for the FSWed condition. This value is approximately 70% higher than that of AA 6061 alloy.

Keywords

friction stir welding / IF-steel / aluminum alloy / microstructure / mechanical properties / formability

Cite this article

Download citation ▾
Semih Mahmut Aktarer, Dursun Murat Sekban, Tevfik Kucukomeroglu, Gencaga Purcek. Microstructure, mechanical properties and formability of friction stir welded dissimilar materials of IF-steel and 6061 Al alloy. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(6): 722-731 DOI:10.1007/s12613-019-1783-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu RZ, Ni DR, Yang Q, Liu CZ, Ma ZY. Pinless friction stir spot welding of Mg-3Al-1Zn alloy with Zn interlayer. J. Mater. Sci. Technol., 2016, 32(1): 76.

[2]

Liu X, Lan SH, Ni J. Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Mater. Des., 2014, 59, 50.

[3]

Sekban DM, Saray O, Aktarer SM, Purcek G, Ma ZY. Microstructure, mechanical properties and formability of friction stir processed interstitial-free steel. Mater. Sci. Eng. A, 2015, 642, 57.

[4]

Movahedi M, Kokabi AH, Seyed Reihani SM, Cheng WJ, Wang CJ. Effect of annealing treatment on joint strength of aluminum/steel friction stir lap weld. Mater. Des., 2013, 44, 487.

[5]

Sameer MD, Birru AK. Investigations on microstructural evolutions and mechanical properties of dual-phase 600 steel and AA6082-T6 aluminum alloy dissimilar joints fabricated by friction stir welding. Trans. Indian Inst. Met., 2019, 72(2): 353.

[6]

Wan L, Huang YX. Friction stir welding of dissimilar aluminum alloys and steels: a review. Int. J. Adv. Manuf. Technol., 2018, 99(5–8): 1781.

[7]

Seo B, Song KH, Park K. Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel. Met. Mater. Int., 2018, 24(6): 1232.

[8]

Thomä M, Wagner G, Straß B, Wolter B, Benfer S, Fürbeth W. Ultrasound enhanced friction stir welding of aluminum and steel: Process and properties of EN AW 6061/DC04-joints. J. Mater. Sci. Technol., 2017, 34(1): 163.

[9]

P.H.C.P.D. Cunha, G.V.B. Lemos, L. Bergmann, A. Reguly, J.F.D. Santos, R.R. Marinho, and M.T.P. Paes, Effect of welding speed on friction stir welds of GL E36 shipbuilding steel, J. Mater. Res. Technol., 2018. https://doi.org/10.1016/j.jmrt.2018.07.014

[10]

Nie FH, Dong HG, Chen S, Li P, Wang LY, Zhao ZX, Li XT, Zhang H. Microstructure and mechanical properties of pulse MIG welded 6061/A356 aluminum alloy dissimilar butt joints. J. Mater. Sci. Technol., 2018, 34(3): 551.

[11]

Wang BB, Chen FF, Liu F, Wang WG, Xue P, Ma ZY. Enhanced mechanical properties of friction stir welded 5083Al-H19 joints with additional water cooling. J. Mater. Sci. Technol., 2017, 33(9): 1009.

[12]

Venkatesh KM, Arivarsu M, Manikandan M, Arivazhagan N. Review on friction stir welding of steels. Mater. Today Proc., 2018, 5(5): 13227.

[13]

Mishra RS, Ma ZY. Friction stir welding and processing. Mater. Sci. Eng. R, 2005, 50(1–2): 1.

[14]

Jafarzadegan M, Abdollah-zadeh A, Feng AH, Saeid T, Shen J, Assadi H. Microstructure and mechanical properties of a dissimilar friction stir weld between austenitic stainless steel and low carbon steel. J. Mater. Sci. Technol., 2013, 29(4): 367.

[15]

Costa MI, Leitão C, Ramalho AL, Rodrigues DM. Local improvement of structural steels high-friction properties by friction stir texturing. J. Mater. Process. Technol., 2015, 217, 272.

[16]

Bozzi S, Helbert-Etter AL, Baudin T, Criqui B, Kerbiguet JG. Intermetallic compounds in Al 6016/IF-steel friction stir spot welds. Mater. Sci. Eng. A, 2010, 527(16–17): 4505.

[17]

Sun YF, Fujii H, Takaki N, Okitsu Y. Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. Mater. Des., 2013, 47, 350.

[18]

Movahedi M, Kokabi A H, Seyed Reihani SM. Investigation on friction stir lap welding of aluminium to aluminium clad steel sheets. Sci. Technol. Weld. Joining, 2012, 17(3): 231.

[19]

Kimapong K, Watanabe T. Lap joint of A5083 aluminum alloy and SS400 steel by friction stir welding. Mater. Trans., 2005, 46(4): 835.

[20]

Wang TH, Komarasamy M, Liu KM, Mishra RS. Friction stir butt welding of strain-hardened aluminum alloy with high strength steel. Mater. Sci. Eng. A, 2018, 737, 85.

[21]

Sundman B, Ohnuma I, Dupin N, Kattner UR, Fries SG. An assessment of the entire Al-Fe system including D03 ordering. Acta Mater., 2009, 57(10): 2896.

[22]

Sajan SG, Meshram M, Srinivas P, Dey SR. Friction stir welding of aluminum 6082 with mild steel and its joint analyses. Int. J. Adv. Mater. Manuf. Charact., 2013, 3(1): 189.

[23]

Ramachandran KK, Murugan N, Shashi Kumar S. Performance analysis of dissimilar friction stir welded aluminium alloy AA5052 and HSLA steel butt joints using response surface method. Int. J. Adv. Manuf. Technol., 2016, 86(9–12): 2373.

[24]

Merklein M, Giera A. Laser assisted friction stir welding of drawable steel-aluminium tailored hybrids. Int. J. Mater. Form., 2008, 1(1): 1299.

[25]

Kundu S, Roy D, Bhola R, Bhattacharjee D, Mishra B, Chatterjee S. Microstructure and tensile strength of friction stir welded joints between interstitial free steel and commercially pure aluminium. Mater. Des., 2013, 50, 370.

[26]

Krishnan KN. On the formation of onion rings in friction stir welds. Mater. Sci. Eng. A, 2002, 327(2): 246.

[27]

Kumar K, Kailas SV. The role of friction stir welding tool on material flow and weld formation. Mater. Sci. Eng. A, 2008, 485(1–2): 367.

[28]

Mahoney MW, Rhodes CG, Flintoff JG, Bingel WH, Spurling RA. Properties of friction-stir-welded 7075 T651 aluminum. Metall. Mater. Trans. A, 1998, 29(7): 1955.

[29]

Sutton MA, Yang B, Reynolds AP, Taylor R. Microstructural studies of friction stir welds in 2024-T3 aluminum. Mater. Sci. Eng. A, 2002, 323(1–2): 160.

[30]

Sekban DM, Aktarer SM, Zhang H, Xue P, Ma ZY, Purcek G. Microstructural and mechanical evolution of a low carbon steel by friction stir processing. Metall. Mater. Trans. A, 2017, 48(8): 3869.

[31]

Abdulstaar MA, Al-Fadhalah KJ, Wagner L. Microstructural variation through weld thickness and mechanical properties of peened friction stir welded 6061 aluminum alloy joints. Mater. Charact., 2017, 126, 64.

[32]

Çam G, Mistikoglu S. Recent developments in friction stir welding of Al-alloys. J. Mater. Eng. Perform., 2014, 23(6): 1936.

[33]

Derazkola HA, Elyasi M. Feasibility study on aluminum alloys and A441 AISI steel joints by friction stir welding. Int. J. Adv. Des. Manuf. Technol, 2014, 7(4): 99.

[34]

Bang H, Bang H, Jeon G, Oh I, Ro C. Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel. Mater. Des., 2012, 37, 48.

[35]

Coelho RS, Kostka A, dos Santos JF, Kaysser-Pyzalla A. Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure. Mater. Sci. Eng. A, 2012, 556, 175.

[36]

Liu X, Lan SH, Ni J. Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel. J. Mater. Process. Technol., 2015, 219, 112.

[37]

Tanaka T, Morishige T, Hirata T. Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys. Scripta Mater., 2009, 61(7): 756.

[38]

Watanabe T, Takayama H, Yanagisawa A. Joining of aluminum alloy to steel by friction stir welding. J. Mater. Process. Technol., 2006, 178(1–3): 342.

[39]

Chen CM, Kovacevic R. Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding. Int. J. Mach. Tools Manuf., 2004, 44(11): 1205.

[40]

Kusuda Y. Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass-production vehicle. Ind. Robot-I.J. Rob. Res. Appl., 2013, 40(3): 208.

[41]

Saray O. Biaxial deformation behavior and formability of precipitation hardened ultra-fine grained (UFG) Cu-Cr-Zr alloy. Mater. Sci. Eng. A, 2016, 656, 120.

[42]

Sadeghian B, Taherizadeh A, Atapour M. Simulation of weld morphology during friction stir welding of aluminum-stainless steel joint. J. Mater. Process. Technol., 2018, 259, 96.

[43]

Saray O, Purcek G, Karaman I, Maier HJ. Formability of ultrafine-grained interstitial-free steels. Metall. Mater. Trans. A, 2013, 44(9): 4194.

[44]

Saray O, Purcek G, Karaman I, Maier HJ. Improvement of formability of ultrafine-grained materials by post-SPD annealing. Mater. Sci. Eng. A, 2014, 619, 119.

[45]

M.P. Manahan, A.E. Browning, A.S. Argon, and O.K. Harling, Miniaturized disk bend test technique development and application, ASTM Spec. Tech. Publ., (1986), p. 17.

[46]

Yue YM, Li ZW, Ji SD, Huang YX, Zhou ZL. Effect of reverse-threaded pin on mechanical properties of friction stir lap welded alclad 2024 aluminum alloy. J. Mater. Sci. Technol., 2016, 32(7): 671.

[47]

Mironov S, Sato YS, Kokawa H. Microstructural evolution during friction stir-processing of pure iron. Acta Mater., 2008, 56(11): 2602.

[48]

Cetin ME, Demirtas M, Sofuoglu H, Cora N, Purcek G. Effects of grain size on room temperature deformation behavior of Zn-22Al alloy under uniaxial and biaxial loading conditions. Mater. Sci. Eng. A, 2016, 672, 78.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/