Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach

Keemi Lim , Wen Shyang Chow , Swee Yong Pung

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (6) : 787 -795.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (6) : 787 -795. DOI: 10.1007/s12613-019-1781-1
Article

Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach

Author information +
History +
PDF

Abstract

The aim of this study was to synthesize and evaluate the thermal properties and ultraviolet (UV) resistance of zinc oxide-functionalized halloysite nanotubes (HNT-ZnO). The HNT-ZnO was synthesized using a facile solvent-free route. The properties of the HNT-ZnO nanofillers were characterized using zeta-potential measurement, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The immobilization of ZnO nanoparticles onto HNT is feasible even at the lowest mass ratio of HNT/ZnO. The TGA results indicate that the thermal stability of the HNT-ZnO nanofillers is higher than that of the HNT. Furthermore, UV-Vis diffuse reflectance spectroscopy (UV-DRS) results show that the HNT-ZnO achieve a total reflectance as high as approximately 87.5% in the UV region, as compare with 66.9% for the HNT. In summary, the immobilization of ZnO onto HNT is a viable approach for increasing the thermal stability and improving the UV shielding of HNT.

Keywords

halloysite nanotubes / zinc oxide nanoparticle / ultraviolet shielding / thermal properties

Cite this article

Download citation ▾
Keemi Lim, Wen Shyang Chow, Swee Yong Pung. Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(6): 787-795 DOI:10.1007/s12613-019-1781-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B. Halloysite clay minerals — a review. Clay Miner., 2005, 40(4): 383.

[2]

Guimarães L, Enyashin AN, Seifert G, Duarte HA. Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J. Phys. Chem. C, 2010, 114(26): 11358.

[3]

Liu MX, Jia ZX, Jia DM, Zhou CR. Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog. Polym. Sci., 2014, 39(8): 1498.

[4]

Zahidah KA, Kakooei S, Ismail MC, Raja PB. Halloysite nanotubes as nanocontainer for smart coating application: A review. Prog. Org. Coat., 2017, 111, 175.

[5]

Kamble R, Ghag M, Gaikawad S, Panda BK. Halloysite nanotubes and applications: A review. J. Adv. Sci. Res., 2012, 3(2): 25.

[6]

Molecules, 2017, 22(5) art. No. 838

[7]

Abdullayev E, Lvov Y. Halloysite clay nanotubes for controlled release of protective agents. J. Nanosci. Nanotechnol., 2011, 11(11): 10007.

[8]

Yuan P, Tan DY, Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl. Clay Sci., 2015, 112–113, 75.

[9]

Appl. Sci., 2017, 7(12) art. No. 1215

[10]

Rawtani D, Agrawal YK. Multifarious applications of halloysite nanotubes: A review. Rev. Adv. Mater. Sci., 2012, 30(3): 282.

[11]

Kotal M, Bhowmick AK. Polymer nanocomposites from modified clays: Recent advances and challenges. Prog. Polym. Sci., 2015, 51, 127.

[12]

Bratovčić A, Odobašić A, Ćatić S, Šestan I. Application of polymer nanocomposite materials in food packaging. Croat. J. Food Sci. Technol., 2015, 7(2): 86.

[13]

Karimi S, Ataie A. Characterization of mechanothermally processed nanostructured ZnO. Int. J. Miner. Metall. Mater., 2016, 23(5): 588.

[14]

Chamorro W, Ghanbaja J, Battie Y, Naciri AE, Soldera F, Mücklich F, Horwat D. Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films. J. Phys. Chem. C, 2016, 120, 29405.

[15]

S. Sabir, M. Arshad, and S.K. Chaudhari, Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications, Sci. World J., 2014(2014), art. No. 925494.

[16]

Stefanescu EA, Daranga C, Stefanescu C. Insight into the broad field of polymer nanocomposites: from carbon nanotubes to clay nanoplatelets, via metal nanoparticles. Materials, 2009, 2(4): 2095.

[17]

Uikey P, Vishwakarma K. Review of zinc oxide (ZnO) nanoparticles applications and properties. Int. J. Emerg. Technol. Comput. Sci. Electron, 2016, 21(2): 239.

[18]

Huang X, Wang M, Shao LD, Willinger MG, Lee CS, Meng XM. Polarity-free epitaxial growth of heterostructured ZnO/ZnS core/shell nanobelts. J. Phys. Chem. Lett., 2013, 4(5): 740.

[19]

Li JZ, Zhou MJ, Ye ZF, Wang HQ, Ma CC, Huo PW, Yan YS. Enhanced photocatalytic activity of g-C3N4-ZnO/HNT composite heterostructure photocatalysts for degradation of tetracycline under visible light irradiation. RSC Adv., 2015, 5(111): 91177.

[20]

H.X. Peng, X.H. Liu, W. Tang, and R.Z. Ma, Facile synthesis and characterization of ZnO nanoparticles grown on halloysite nanotubes for enhanced photocatalytic properties, Sci. Rep., 7(2017), art. No. 2250.

[21]

Ho BYK. Development of light-stable PVC stabilizer systems for rigid weatherable applications. J. Vinyl Tech., 1984, 6(4): 162.

[22]

Andrady AL, Hamid SH, Hu X, Torikai A. Effects of increased solar ultraviolet radiation on materials. J. Photochem. Photobiol. B, 1998, 46(1–3): 96.

[23]

Gogotov IN, Barazov SK. The effect of ultraviolet light and temperature on the degradation of composite polypropylene. Int. Polym. Sci. Technol., 2014, 41(3): 55.

[24]

Tocháček J, Vrátníčková Z. Polymer life-time prediction: The role of temperature in UV accelerated ageing of polypropylene and its copolymers. Polym. Test., 2014, 36, 82.

[25]

Shu Z, Zhang Y, Ouyang J, Yang HM. Characterization and synergetic antibacterial properties of ZnO and CeO2 supported by halloysite. Appl. Surf. Sci., 2017, 420(135): 833.

[26]

Zhuang J, Yu GR. Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere, 2002, 49(6): 619.

[27]

Açışlı Karaca S, Gürses A. Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions. Appl. Clay Sci., 2017, 142, 90.

[28]

W. Yu, and H.Q Xie, A review on nanofluids: preparation, stability mechanisms, and applications, J. Nanomater., 2012(2012), art. No. 435873.

[29]

T. Meißner, K. Oelschlägel, and A. Potthoff, Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies, Int. Nano Lett., 4(2014), No. 3, art. No. 115.

[30]

Yuan FL, Peng H, Yin Y, Chunlei Y, Ryu H. Preparation of zinc oxide nanoparticles coated with homogeneous Al2O3 layer. Mater. Sci. Eng. B, 2005, 122(1): 55.

[31]

Marsalek R. Particle size and zeta potential of ZnO. APC-BEE Proc., 2014, 9, 13.

[32]

Yuan P, Southon PD, Liu ZW, Green MER, Hook JM, Antill SJ, Kepert CJ. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J. Phys. Chem. C, 2008, 112(40): 15742.

[33]

Gültekin D, Alaf M, Akbulut H. Synthesis and characterization of ZnO nanopowders and ZnO-CNT nanocomposites prepared by chemical precipitation route. Acta Phys. Pol. A, 2013, 123(2): 274.

[34]

Sharma J, Vashishtha M, Shah DO. Crystallite size dependence on structural parameters and photocatalytic activity of microemulsion mediated synthesized ZnO nanoparticles annealed at different temperatures. Global J. Sci. Front. Res. B, 2014, 14(5): 19.

[35]

Kloprogge JT. Characterisation of halloysite by spectroscopy. Dev. Clay Sci., 2016, 7, 115.

[36]

Pourrahimi AM, Liu D, Ström V, Hedenqvist MS, Olsson RT, Gedde UW. Heat treatment of ZnO nanoparticles: new methods to achieve high-purity nanoparticles for high-voltage applications. J. Mater. Chem. A, 2015, 3(33): 17190.

[37]

Babu BC, Buddhudu S. Emission spectra of Tb3+: Zn2SiO4 and Eu3+: Zn2SiO4 sol-gel powder phosphors. J. Spectrocs. Dyn., 2014, 4(5): 1.

[38]

Yedurkar S, Maurya C, Mahanwar P. Biosynthesis of zinc oxide nanoparticles using Ixora Coccinea leaf extract—A green approach. J. Synth. Theory Appl., 2016, 5, 1.

[39]

Sabahi H, Khorami M, Rezayan AH, Jafari Y, Karami MH. Surface functionalization of halloysite nanotubes via curcumin inclusion. Colloids Surf. A, 2018, 538, 834.

[40]

L. Tzounis, S. Herlekar, A. Tzounis, N.D. Charisiou, M. Goula, and M. Stamm, Halloysite nanotubes noncovalently functionalised with SDS anionic surfactant and PS-b-P4VP block copolymer for their effective dispersion in polystyrene as UV-blocking nanocomposite films, J. Nanomater., 2017(2017), art No. 3852310.

[41]

A.H. Moharram, S.A. Mansour, M.A. Hussein, and M. Rashad, Direct precipitation and characterization of ZnO nanoparticles, J. Nanomater., 2014(2014), art. No. 716210.

[42]

M. Maruthupandy, M. Anand, G. Maduraiveeran, S. Suresh, A.S.H. Beevi, and R.J. Priya, Investigation on the electrical conductivity of ZnO nanoparticles-decorated bacterial nanowires, Adv. Nat. Sci.: Nanosci. Nanotechnol., 7(2016), No. 4, art. No. 045011.

[43]

Z.C. Shen, H.J. Zhou, H.Y. Chen, H. Xu, C.H. Feng, and X.H. Zhou, Synthesis of nano-zinc oxide loaded on mesoporous silica by coordination effect and its photocatalytic degradation property of methyl orange, Nanomaterials, 8(2018), No. 5, art. No. 317.

[44]

Ghamsari MS, Alamdari S, Han W, Park HH. Impact of nanostructured thin ZnO film in ultraviolet protection. Int. J. Nanomed., 2017, 12, 207.

[45]

Kiomarsipour N, Razavi RS, Ghani K, Kioumarsipour M. Evaluation of shape and size effects on optical properties of ZnO pigment. Appl. Surf. Sci., 2013, 270, 33.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/