Effect of Ni addition on microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys with a high Mg/Si ratio

Gao-jie Li , Ming-xing Guo , Yu Wang , Cai-hui Zheng , Ji-shan Zhang , Lin-zhong Zhuang

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (6) : 740 -751.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (6) : 740 -751. DOI: 10.1007/s12613-019-1778-9
Article

Effect of Ni addition on microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys with a high Mg/Si ratio

Author information +
History +
PDF

Abstract

The effect of adding 0.03wt% Ni on the microstructure and mechanical properties of Al-Mg-Si-Cu-Zn alloys was systematically studied. The results reveal that the number density of spherical Fe-rich phases within grains increases with the addition of Ni, accompanied by the formation of Q (Al3Mg9Si7Cu2) precipitates around the spherical Fe-rich phases. Additionally, Ni addition is beneficial to reducing the grain size in the as-cast state. During the homogenization process, Q phases could be completely dissolved and the grain size could remain basically unchanged. However, compared with the Ni-free alloy, the Fe-rich phase in the Ni-containing alloy is more likely to undergo the phase transformation and further form more spherical particles during homogenization treatment. After thermomechanical processing, the distribution of Fe-rich phases in the Ni-containing alloy was further greatly improved and directly resulted in a greater formability than that of the Ni-free alloy. Accordingly, a reasonable Ni addition positively affected the microstructure and formability of the alloys.

Keywords

Al-Mg-Si-Cu-Zn alloy / Ni addition / Fe-rich phase / phase transformation / formability

Cite this article

Download citation ▾
Gao-jie Li, Ming-xing Guo, Yu Wang, Cai-hui Zheng, Ji-shan Zhang, Lin-zhong Zhuang. Effect of Ni addition on microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys with a high Mg/Si ratio. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(6): 740-751 DOI:10.1007/s12613-019-1778-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hirsch J, Al-Samman T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater., 2013, 61(3): 818.

[2]

Guo MX, Zhang YD, Li GJ, Jin SB, Sha G, Zhang JS, Zhuang LZ, Lavernia EJ. Solute clustering in Al-Mg-Si-Cu-(Zn) alloys during aging. J. Alloys Compd., 2019, 774, 347.

[3]

Guo MX, Sha G, Cao LY, Liu WQ, Zhang JS, Zhuang LZ. Enhanced bake-hardening response of an Al-Mg-Si-Cu alloy with Zn addition. Mater. Chem. Phys., 2015, 162, 15.

[4]

Wang XF, Guo MX, Zhang Y, Xing H, Li Y, Luo JR, Zhang JS, Zhuang LZ. The dependence of microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheet on final cold rolling deformation. J. Alloys Compd., 2016, 657, 906.

[5]

Farshidi MH, Rifai M, Miyamoto H. Microstructure evolution of a recycled Al-Fe-Si-Cu alloy processed by tube channel pressing. Int. J. Miner. Metall. Mater., 2018, 25(10): 1166.

[6]

Taub AI, Krajewski PE, Luo AA, Owens JN. The evolution of technology for materials processing over the last 50 years: The automotive example. JOM, 2007, 59(2): 48.

[7]

Garrett RP, Lin J, Dean TA. An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling. Int. J. Plast., 2005, 21(8): 1640.

[8]

Cuniberti A, Tolley A, Riglos MVC, Giovachini R. Influence of natural aging on the precipitation hardening of an AlMgSi alloy. Mater. Sci. Eng. A, 2010, 527(20): 5307.

[9]

Guo MX, Li GJ, Zhang YD, Sha G, Zhang JS, Zhuang LZ, Lavernia EJ. Influence of Zn on the distribution and composition of heterogeneous solute-rich features in peak aged Al-Mg-Si-Cu alloys. Scr. Mater., 2019, 159, 5.

[10]

Koch S, Antrekowitsch H. Alloying behaviour of Cu, Mg and Mn in lead-free Al-Cu based alloys intended for free machining. BHM Berg- Huttenmann. Monatsh., 2011, 156(1): 22.

[11]

Lu T, Pan Y, Wu JL, Tao SW, Chen Y. Effects of La addition on the microstructure and tensile properties of Al-Si-Cu-Mg casting alloys. Int. J. Miner. Metall. Mater., 2015, 22(4): 405.

[12]

Meng Y, Cui JZ, Zhao ZH, Zuo YB. Effect of vanadium on the microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr-Ti alloy of 6XXX series. J. Alloys Compd., 2013, 573, 102.

[13]

Meng Y, Cui JZ, Zhao ZH, He LZ. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting. Mater. Charact., 2014, 92(6): 138.

[14]

He LZ, Cao YH, Zhou YZ, Cui JZ. Effects of Ag addition on the microstructures and properties of Al-Mg-Si-Cu alloys. Int. J. Miner. Metall. Mater., 2018, 25(1): 62.

[15]

Haro-Rodríguez S, Goytia-Reyes RE, Dwivedi DK, Baltazar-Hernández VH, Flores-Zúñiga H, Pérez-López MJ. On influence of Ti and Sr on microstructure, mechanical properties and quality index of cast eutectic Al-Si-Mg alloy. Mater. Des., 2011, 32(4): 1865.

[16]

Chen Q, Pan QL, Wang Y, Zhang ZY, Zhou J, Liu C. Microstructure and mechanical properties of Al-5.8Mg-Mn-Sc-Zr alloy after annealing treatment. J. Cent. South Univ., 2012, 19(7): 1785.

[17]

Lu X, Zhao LH, Zhu LP, Zhang B, Qu XH. High-temperature mechanical properties and deformation behavior of high Nb containing TiAl alloys fabricated by spark plasma sintering. Int. J. Miner. Metall. Mater., 2012, 19(4): 354.

[18]

Liu T, He CN, Li G, Meng X, Shi CS, Zhao NQ. Microstructural evolution in Al-Zn-Mg-Cu-Sc-Zr alloys during short-time homogenization. Int. J. Miner. Metall. Mater., 2015, 22(5): 516.

[19]

Li HZ, Liang XP, Li FF, Guo FF, Li Z, Zhang XM. Effect of Y content on microstructure and mechanical properties of 2519 aluminum alloy. Trans. Nonferrous Met. Soc. China, 2007, 17(6): 1194.

[20]

Kadi-Hanifi M, Tirsatine K. Influence of Cd and Sn on the kinetics of the GP zones formation in Al-Zn-Mg. Mater. Sci. Forum, 2000, 331, 1067.

[21]

Wilson RN, Forsyth PJE. Effects of Additions of 1% Iron and 1% Nickel and of Pre-strain on the Age-hardening of an Aluminium-2.5%Copper-1.2%Magnesium Alloy, 1964, Farnborough, Ministry of Aviation; Royal Aircraft Establishment; RAE.

[22]

Hernandez-Sandoval J, Garza-Elizondo GH, Samuel AM, Valtiierra S, Samuel FH. The ambient and high temperature deformation behavior of Al-Si-Cu-Mg alloy with minor Ti, Zr, Ni additions. Mater. Des., 2014, 58, 89.

[23]

Lv XY, Guo EJ, Li ZH, Wang GJ. Research on microstructure in as-cast 7A55 aluminum alloy and its evolution during homogenization. Rare Met., 2011, 30(6): 664.

[24]

Jacobs MH. The structure of metastable precipitates formed during ageing of an Al-Mg-Si alloy. Philos. Mag. A, 1972, 26(1): 1.

[25]

Weatherly GC, Perovic A, Perovic DD, Mukhopadhyay NK, Lloyd DJ. The precipitation of the Q phase in an AA6111 Alloy. Metall. Mater. Trans. A, 2001, 32(2): 213.

[26]

Orozco-González P, Castro-Román M, Martínez AI, Herrera-Trejo M, López AA, Quispe-Marcatoma J. Precipitation of Fe-rich intermetallic phases in liquid Al-13.58Si-11.59Fe-1.19Mn alloy. Intermetallics, 2010, 18(8): 1617.

[27]

Xing ZB, Nie ZR, Ji XL, Wang XD, Zou JX. Effect of trace element erbium and manganese on microstructure and properties of Al-Mg alloy. Rare Met. Mater. Eng., 2006, 35(12): 1979.

[28]

Herlach DM, Eckler K, Karma A, Schwarz M. Grain refinement through fragmentation of dendrites in undercooled melts. Mater. Sci. Eng. A, 2001, 304–306, 20.

[29]

Zhang H, Jin NP, Chen JH. Hot deformation behavior of Al-Zn-Mg-Cu-Zr aluminum alloys during compression at elevated temperature. Trans. Nonferrous Met. Soc. China, 2011, 21(3): 437.

[30]

Chen ZG, Zheng ZQ, Ringer SP. Effect of small addition of Sc on the microstructural evolution in Al-15Ag alloy. J. Mater. Sci. Technol., 2005, 21(5): 630.

[31]

Chen ZW, Fan QY, Zhao K. Microstructure and microhardness of nanostructured Al-4.6Cu-Mn alloy ribbons. Int. J. Miner. Metall. Mater., 2015, 22(8): 860.

[32]

Liu YF, Tian W, Sun Y. Research progress of microalloying of Al-Zn-Mg-Cu aluminum alloy. Nonferrous Met. Mater. Eng., 2018, 39(1): 38.

[33]

Gilmore DL, Starke EA Jr. Trace element effects on precipitation processes and mechanical properties in an Al-Cu-Li alloy. Metall. Mater. Trans. A, 1997, 28(7): 1399.

[34]

Lodgaard L, Ryum N. Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Si alloys. Mater. Sci. Eng. A, 2000, 283(1–2): 144.

[35]

Marioara CD, Andersen SJ, Zandbergen HW, Holmestad R. The influence of alloy composition on precipitates of the Al-Mg-Si system. Metall. Mater. Trans. A, 2005, 36(3): 691.

[36]

Chen ZG, Zheng ZQ, Wang ZX. Effect of lithium on the aging characteristics and microstructure of Al-4Mg-1.5Cu-0.4Ag alloys. J. Mater. Sci., 2004, 39(6): 2253.

[37]

Yin ZM, Pan QL, Zhang YH, Jiang F. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys. Mater. Sci. Eng. A, 2000, 280(1): 151.

[38]

Ocenasek V, Slamova M. Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys. Mater. Charact., 2001, 47(2): 157.

[39]

Kuijpers NCW, Vermolen FJ, Vuik K, van der Zwaag S. A model of the β-AlFeSi to α-Al(FeMn)Si transformation in Al-Mg-Si alloys. Mater. Trans., 2003, 44(7): 1448.

[40]

Li YJ, Arnberg L. A eutectoid phase transformation for the primary intermetallic particle from Alm(Fe, Mn) to Al3(Fe, Mn) in AA5182 alloy. Acta Mater., 2004, 52(10): 2945.

[41]

Cai YH, Wang C, Zhang JS. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy. Int. J. Miner. Metall. Mater., 2013, 20(7): 659.

[42]

Cao LY, Guo MX, Cui H, Cai YH, Zhang QX, Hu XQ, Zhang JS. Study on the kinetics of phase transformation β → α in the homogeneous heat treatment of Al-Mg-Si series alloys. Acta Metall. Sin., 2013, 49(4): 428.

[43]

Lievers WB, Pilkey AK, Lloyd DJ. The influence of iron content on the bendability of AA6111 sheet. Mater. Sci. Eng. A, 2003, 361(1–2): 312.

[44]

Zhuang L, Bottema J, Kaasenbrood P, Miller WS, De Smet P. The effect of small particles on annealed grain size and texture of Al-Mg-Si alloys. Mater. Sci. Forum, 1996, 217–222, 487.

[45]

Guo MX, Zhu J, Zhang Y, Li GJ, Lin T, Zhang JS, Zhuang LZ. The formation of bimodal grain size distribution in Al-Mg-Si-Cu alloy and its effect on the formability. Mater. Charact., 2017, 132, 248.

[46]

Ma PC, Zhang D, Zhuang LZ, Zhang JS. Effect of alloying elements and processing parameters on the Portevin-Le Chatelier effect of Al-Mg alloys. Int. J. Miner. Metall. Mater., 2015, 22(2): 175.

[47]

Engler O. Nucleation and growth during recrystallisation of aluminium alloys investigated by local texture analysis. Mater. Sci. Technol., 1996, 12(10): 859.

[48]

Robson JD, Henry DT, Davis B. Particle effects on re-crystallization in magnesium-manganese alloys: Particle-stimulated nucleation. Acta Mater., 2009, 57(9): 2739.

[49]

Wang XF, Guo MX, Luo JR, Zhu J, Zhang JS, Zhuang LZ. Effect of Zn on microstructure, texture and mechanical properties of Al-Mg-Si-Cu alloys with a medium number of Fe-rich phase particles. Mater. Charact., 2017, 134, 123.

[50]

Li GJ, Guo MX, Du JQ, Zhang JS, Zhuang LZ, Lavernia EJ. Influence of precipitate-assisted nucleation on the microstructure and mechanical properties of Al-Mg-Si-Cu-Zn alloys. Philos. Mag., 2019, 99(11): 1335.

[51]

Vatne HE, Engler O, Nes E. Influence of particles on recrystallisation textures and microstructures of aluminium alloy 3103. Mater. Sci. Technol, 1997, 13(2): 93.

[52]

Wu PD, MacEwen SR, Lloyd DJ, Neale KW. Effect of cube texture on sheet metal formability. Mater. Sci. Eng. A, 2004, 364(1–2): 182.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/