Electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O system for Dy–Cu intermediate alloy production

Shu-mei Chen , Chun-fa Liao , Jue-yuan Lin , Bo-qing Cai , Xu Wang , Yun-fen Jiao

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (6) : 701 -709.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (6) : 701 -709. DOI: 10.1007/s12613-019-1775-z
Article

Electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O system for Dy–Cu intermediate alloy production

Author information +
History +
PDF

Abstract

Dy–Cu intermediate alloys have shown substantial potential in the field of magnetostrictive and magnetic refrigerant materials. Therefore, this study focused on investigating the electrical conductivity of molten-salt systems for the preparation of Dy–Cu alloys and on optimizing the corresponding operating parameters. The electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O systems was measured from 910 to 1030°C using the continuously varying cell constant method. The dependencies of the LiF–DyF3–Dy2O3–Cu2O system conductivity on the melt composition and temperature were examined herein. The optimal operating conditions for Dy–Cu alloy production were determined via analyses of the electrical conductivity and activation energies for conductance, which were calculated using the Arrhenius equation. The conductivity of the molten system regularly increases with increasing temperature and decreases with increasing concentration of Dy2O3 or Cu2O or both. The activation energy E κ of the LiF–DyF3–Dy2O3 and LiF–DyF3–Cu2O molten-salt systems increases with increasing Dy2O3 or Cu2O content. The regression functions of conductance as a function of temperature (t) and the addition of Dy2O3 (W(Dy2O3)) and Cu2O (W(Cu2O)) can be expressed as κ = −2.08435 + 0.0068t − 0.18929W(Dy2O3) −0.07918W(Cu2O). The optimal electrolysis conditions for preparing the Dy–Cu alloy in LiF–DyF3–Dy2O3–Cu2O molten salt are determined to be 2.0wt% > W(Dy2O3) + W(Cu2O) > 3.0wt% and W(Dy2O3): W(Cu2O) = 1:2 at 970 to 1000 °C.

Keywords

electrical conductivity / molten salt / Dy–Cu alloy / dysprosium oxide / cuprous oxide

Cite this article

Download citation ▾
Shu-mei Chen, Chun-fa Liao, Jue-yuan Lin, Bo-qing Cai, Xu Wang, Yun-fen Jiao. Electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O system for Dy–Cu intermediate alloy production. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(6): 701-709 DOI:10.1007/s12613-019-1775-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pang SM, Wang ZQ, Zhou L, Chen BY, Xu LH, Zhao B, Yan SH, Li ZA. Study on preparation of high-purified terbium and dysprosium metals used for rare earth giant magnetostrictive materials. Chin. Rare Earths, 2008, 29(6): 31.

[2]

Liu FD, Su Y, Chen YQ, Xiong YF, Yi XF. Investigation and development of NdFeB magnets with excellent magnetic properties and stability of temperature. Met. Funct. Mater., 2010, 17(3): 5.

[3]

Yu LQ, Cui XG, Luo W, Yan M. Influence of Cu and Gd on thermal stability and magnetic properties of Nd(DyAl)FeB magnets. J. Zhejiang Univ. Eng. Sci., 2005, 39(8): 1251.

[4]

Pang SM, Yan SH, Li ZA, Chen DH, Xu LH, Zhao B. Development on molten salt electrolytic methods and technology for preparing rare earth metals and alloys in China. Chin. J. Rare Met., 2011, 35(3): 440.

[5]

Liu GK, Tong YX, Hong HC, Chen SY, Gan L. Studies on the preparation of Dy-Cu alloy in chloride melt by molten salt electrolysis. Acta Metall. Sinica, 1996, 32(12): 1252.

[6]

Saïla A, Gibilaro M, Massot L, Chamelot P, Taxil P, Affoune AM. Electrochemical behavior of dysprosium(III) in LiF-CaF2 on Mo, Ni and Cu electrodes. J. Electroanal. Chem., 2010, 642(2): 150.

[7]

Konishi H, Ono H, Takeuchi E, Nohira T, Oishi T. Electrochemical formation of RE-Cu (RE = Dy, Nd) alloys in a molten LiCl-KCl system. ECS Trans., 2013, 53(11): 37.

[8]

Mohandas KS, Sanil N, Rodriguez P. Development of a high temperature conductance cell and electrical conductivity measurements of MAlCl4 (M = Li, Na and K) melts. Miner. Process. Extr. Metall., 2006, 115(1): 25.

[9]

Kan HM, Wang ZW, Ban YG, Shi ZN, Qiu ZX. Electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF(NaCl) system electrolyte. Trans. Nonferrous Met. Soc. China, 2007, 17(1): 181.

[10]

Chen LY. Research on Physical and Chemical Properties of LiF-NdF3-Nd2O3 Molten Salt System, 2015, Shanghai, East China University of Science and Technology 2.

[11]

Lv XJ, Chen SY, Tian ZL, Lai YQ, Li J. Review on the physical-chemical properties of the Na3AlF6-K3AlF6-AlF3 molten salt system. Light Met., 2013, 8, 29.

[12]

V. Daněk, Physical and Chemical Analysis of Molten Electrolyte, B.L. Gao, X.W. Hu, Z.N. Shi, and Z.W. Wang, translated, Metallurgical Industry Press, Beijing, 2014, p. 54.

[13]

Hu XW, Wang ZW, Gao BL, Shi ZN. Study on the electrical conductivity of NdF3-LiF-Nd2O3 system melts determined by CVCC technique. J. Northeastern Univ. Nat. Sci., 2008, 29(9): 1294.

[14]

Wu QS. Electrical conductivity and neodymium solubility of Nd2O3-NdF3-LiF fusion salt system. Rare Met. Cem. Carbides, 2006, 34(1): 52.

[15]

Liao CF, Tang H, Wang X, Luo LS, Fang MZ. Study on electrical conductivity of Na3AlF6-AlF3-LiF-MgF2-Al2O3-Nd2O3-CuO molten salt system. Rare Met. Cem. Carbides, 2016, 44(1): 60.

[16]

Bao M, Wang ZW, Gao BL, Shi ZN, Hu XW, Yu JY. Electrical conductivity of NaF-AlF3-Al2O3-CaF2-ZrO2 molten salts. Trans. Nonferrous Met. Soc. China, 2013, 23(12): 3788.

[17]

Liao CF, Jiao YF, Wang X, Cai BQ, Sun QC, Hao T. Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production. Int. J. Miner. Metall. Mater, 2017, 24(9): 1034.

[18]

Grjotheim K, Nikolic R, Øye HA. Electrical conductivities of binary and ternary melts between MgCl2, CaCl2, NaCl, and KCl. Acta Chem. Scand, 1970, 24(2): 489.

[19]

Guo R. Study of Al-Sc Alloy Prepared by Molten Salt Electrolysis Method, 2009, Shenyang, Northeastern University 27.

[20]

He XF, Li YG, Li ZH. Research on conductivity of KCl-NaCl-NaF-SiO2 molten salt system. Hydrometall. China, 2010, 29(1): 12.

[21]

Guo X, Sietsma J, Yang YX. Lima IBD, Filho WL. A critical evaluation of solubility of rare earth oxides in molten fluorides. Rare Earths Industry: Technological, Economic and Environmental Implications, 2015 223-234.

[22]

Gao BL, Liu FG, Wang ZW, Shi ZN. Study on electrical conductivity of the molten salts of KNO3-NaNO2-NaNO3 ternary system. J. Northeastern Univ. Nat. Sci., 2010, 31(5): 696.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/