Nanoscale electropolishing of high-purity nickel with an ionic liquid

Jon Derek Loftis , Tarek M. Abdel-Fattah

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (5) : 649 -656.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (5) : 649 -656. DOI: 10.1007/s12613-019-1773-1
Article

Nanoscale electropolishing of high-purity nickel with an ionic liquid

Author information +
History +
PDF

Abstract

High purity (>99.9% composition) nickel metal specimens were used in electropolishing treatments with an acid-free ionic liquid electrolyte prepared from quaternary ammonium salts as a green polishing solution. Voltammetry and chronoamperometry tests were conducted to determine the optimum conditions for electrochemical polishing. Atomic force microscopy (AFM) revealed nanoscale effectiveness of each polishing treatment. Atomic force microscopy provided an overall observation of the material interface between the treated and unpolished regions. Surface morphology comparisons summarized electrochemical polishing efficiency by providing root-mean-square roughness averages before and after electrochemical polishing to reveal a mirror finish six times smoother than the same nickel metal surface prior to electropolishing. This transition manifested in a marked change in root-mean-squared roughness from 112.58 nm to 18.64 nm and producing a smooth mirror finish. Finally, the mechanism of the ionic liquid during electropolishing revealed decomposition of choline in the form of a transient choline radical by acceptance of an electron from the nickel-working electrode to decompose to trimethylamine and ethanol.

Keywords

electrochemical polishing / ionic liquid / Ni / 2EG:1VB4

Cite this article

Download citation ▾
Jon Derek Loftis, Tarek M. Abdel-Fattah. Nanoscale electropolishing of high-purity nickel with an ionic liquid. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(5): 649-656 DOI:10.1007/s12613-019-1773-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1): 123.

[2]

Palumbo G, Aust KT. Structure-dependence of intergranular corrosion in high purity nickel. Acta Metall. Mater., 1990, 38(11): 2343.

[3]

Han W, Fang FZ. Fundamental aspects and recent developments in electropolishing. Int. J. Mach. Tools Manuf., 2019, 139, 1.

[4]

Chen M, Ao WL, Dai CS, Tao T, Yang J. Synthesis and electrochemical properties of LiNi0.8Al0.2-xTi xO2 cathode materials by an ultrasonic-assisted co-precipitation method. Int. J. Miner. Metall. Mater., 2009, 16(4): 452.

[5]

Ding C, Gao KW, Chen CF. Effect of Ca2+ on CO2 corrosion properties of X65 pipeline steel. Int. J. Miner. Metall. Mater., 2009, 16(6): 661.

[6]

Wixtrom AI, Buhler JE, Reece CE, Abdel-Fattah TM. Electrochemical polishing applications and EIS of a vitamin B4-based ionic liquid. J. Electrochem. Soc., 2013, 160(3): E22.

[7]

Abdel-Fattah TM, Loftis JD, Mahapatro A. Nanoscale electrochemical polishing and preconditioning of biometallic nickel-titanium alloys. Nanosci. Nanotechnol., 2015, 5(2): 36.

[8]

Rajaguru JC, Duke M, Au C. Investigation of electroless nickel plating on rapid prototyping material of acrylic resin. Rapid Prototyping J., 2016, 22(1): 162.

[9]

Ohara R, Lan CH, Hwang CS. Electrochemical and structural characterization of electroless nickel coating on Mg2Ni hydrogen storage alloy. J. Alloys Compd., 2013, 580, S368.

[10]

Kume T, Egawa S, Yamaguchi G, Mimura H. Influence of residual stress of electrodeposited layer on shape replication accuracy in Ni electroforming. Procedia CIRP, 2016, 42, 783.

[11]

Liu MH, Meng Y, Zhao Y, Li FH, Gong YL, Feng L. Electropolishing parameters optimization for enhanced performance of nickel coating electroplated on mild steel. Surf. Coat. Technol., 2016, 286, 285.

[12]

Wixtrom AI, Buhler JE, Reece CE, Abdel-Fattah TM. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities. J. Environ. Chem. Eng., 2013, 1(1–2): 18.

[13]

Abdel-Fattah TM, Loftis JD. Surface characterization of high purity metals of silver and nickel electropolished with an ionic liquid. ECS Trans, 2010, 25(39): 57.

[14]

Abdel-Fattah TM, Loftis JD, Mahapatro A. Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel. J. Biomed. Nanotechnol., 2010, 7(6): 794.

[15]

Abdel-Fattah TM, Loftis JD, Mahapatro A. Nanoscale surface pretreatment of biomedical Co-Cr alloy. J. Surf. Interfaces Mater., 2015, 3(1): 67.

[16]

Janz GJ. Molten Salts Handbook, 2013 558.

[17]

Abdel-Fattah TM, Loftis JD. Comparison of the electrochemical polishing of copper and aluminum in acid and acid-free media. ECS Trans., 2009, 25(7): 327.

[18]

Abdel-Fattah TM, Loftis JD, Mahapatro A. Ionic liquid electropolishing of metal alloys for biomedical applications. ECS Trans., 2010, 25(19): 57.

[19]

Dushatinski T, Huff C, Abdel-Fattah TM. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions. Appl. Surf. Sci., 2016, 385, 282.

[20]

Abbott AP, McKenzie KJ. Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys., 2006, 37(8): 4265.

[21]

Abbott AP, Frisch G, Hartley J, Karim WO, Ryder KS. Anodic dissolution of metals in ionic liquids. Prog. Nat. Sci., 2015, 25(6): 595.

[22]

Abbott AP, Ballantyne A, Harris RC, Juma JA, Ryder KS, Forrest G. A comparative study of nickel electrodeposition using deep eutectic solvents and aqueous solutions. Electrochim. Acta, 2015, 176, 718.

[23]

Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM, Soliman HH. Roughness parameters. J. Mater. Process. Technol., 2002, 123(1): 133.

[24]

DeOliveira RRL, Albuquerque DAC, Cruz TGS, Yamaji FM, Leite FL. Bellitto V. Measurement of the nanoscale roughness by atomic force microscopy: basic principles and applications. Atomic Force Microscopy, Imaging, Measuring and Manipulating Surfaces at the Atomic Scale, 2012, Croatia, InTech 147.

[25]

Loftis JD, Abdel-Fattah TM. Nanoscale electropolishing of high purity silver with a deep eutectic solvent. Colloid Surf. A, 2016, 551, 113.

[26]

Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Application, 1980, New York, John Wiley and Sons Publishing 864.

[27]

Lambrechts M, Sansen WMC. Biosensors: Microelectrochemical Devices, 1992, Leuven, Belgium, CRC Press 1.

[28]

Dufour J. An Introduction to Metallurgy, 2006, 5th ed. 23.

[29]

Lebedeva O, Kudryavtsev I, Kultin D, Dzhungurova G, Kalmykov K, Kustov L. Self-organized hexagonal nanostructures on nickel and steel formed by anodization in 1-Butyl-3-methylimidazolium bis (triflate) imide ionic liquid. J. Phys. Chem., 2014, 118(36): 21293.

[30]

Abbott AP, Frisch G, Ryder KS. Electroplating using ionic liquids. Ann. Rev. Mater. Res, 2013, 43(1): 335.

[31]

Wu RX, Dong YM, Jiang PP, Wang GL, Chen YM, Wu XM. Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation. Prog. Nat. Sci., 2016, 26(3): 303.

[32]

Haerens K, Matthijs E, Chmielarz A, Van der Bruggen B. The use of ionic liquids based on choline chloride for metal deposition: a green alternative?. J. Environ. Manage., 2009, 90(11): 3245.

[33]

Haerens K, Matthijs E, Binnemans K, Van der Bruggen B. Electrochemical decomposition of choline chloride based ionic liquid analogues. Green Chem., 2009, 11(9): 1357.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/