Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy

C. D. Gómez-Esparza , R. Peréz-Bustamante , J. M. Alvarado-Orozco , J. Muñoz-Saldaña , R. Martínez-Sánchez , J. M. Olivares-Ramírez , A. Duarte-Moller

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (5) : 634 -641.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (5) : 634 -641. DOI: 10.1007/s12613-019-1771-3
Article

Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy

Author information +
History +
PDF

Abstract

An AlCoCuCrFeNiTi high-entropy alloy (HEA) was prepared by mechanical alloying and sintering to study the effect of Ti addition to the widely studied AlCoCuCrFeNi system. The structural and microstructural characteristics were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The formation of four micrometric phases was detected: a Cu-rich phase with a face-centered cubic (fcc) structure, a body-centered cubic (bcc) solid solution with Cu-rich plate-like precipitates (fcc), an ordered bcc phase, and a tetragonal structure. The XRD patterns corroborate the presence of a mixture of bcc-, fcc-, and tetragonal-structured phases. The Vickers hardness of the alloy under study was more than twice that of the AlCoCuCrFeNi alloy. Nanoindentation tests were performed to evaluate the mechanical response of the individual phases to elucidate the relationship between chemical composition, crystal structure, and mechanical performance of the multiphase microstructure of the AlCoCuCrFeNiTi HEA.

Keywords

high-entropy alloys / mechanical alloying / microstructure / nanoindentation

Cite this article

Download citation ▾
C. D. Gómez-Esparza, R. Peréz-Bustamante, J. M. Alvarado-Orozco, J. Muñoz-Saldaña, R. Martínez-Sánchez, J. M. Olivares-Ramírez, A. Duarte-Moller. Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(5): 634-641 DOI:10.1007/s12613-019-1771-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeh JW, Chen SK, Gan JY, Lin SJ, Chin TS, Shun TT, Tsau CH, Chang SY. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A, 2004, 35, 2533.

[2]

Chen ST, Tang WY, Kuo YF, Chen SY, Tsau CH, Shun TT, Yeh JW. Microstructure and properties of age-hardenable Al xCrFe1.5MnNi0.5 alloys. Mater. Sci. Eng. A, 2010, 527(21–22): 5818.

[3]

Sriharitha R, Murty BS, Kottada RS. Phase formation in mechanically alloyed Al xCoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics, 2013, 32, 119.

[4]

Koundinya NTBN, Babu CS, Sivaprasad K, Susila P, Babu NK, Baburao J. Phase evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloy produced by mechanical alloying. J. Mater. Eng. Perform., 2013, 22(10): 3077.

[5]

Wang YF, Ma SG, Chen XH, Shi JY, Zhang Y, Qiao JW. Optimizing mechanical properties of AlCoCrFe-NiTix high-entropy alloys by tailoring microstructures. Acta Metall. Sin.-Engl., 2013, 26(3): 277.

[6]

Cui P, Ma YM, Zhang LJ, Zhang MD, Fan JT, Dong WQ, Yu PF, Li G, Liu RP. Effect of Ti on microstructures and mechanical properties of high entropy alloys based on CoFeMnNi system. Mater. Sci. Eng. A, 2018, 737(8): 198.

[7]

Yan WY, Pun CL, Simon GP. Conditions of applying Oliver-Pharr method to the nanoindentation of particles in composites. Compos. Sci. Technol., 2012, 72(10): 1147.

[8]

Babu CS, Koundinya NTBN, Sivaprasad K, Szpunar JA. Thermal analysis and nanoindentaion studies on nanocrystalline AlCrNiFeZn high entropy alloy. Procedia Mater. Sci., 2014, 6, 641.

[9]

Maier-Kiener V, Schuh B, George EP, Clemens H, Hohenwarter A. Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys. Mater. Des., 2017, 115, 479.

[10]

Lin CM, Tsai HL. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics, 2011, 19(3): 288.

[11]

Chen YL, Hu YH, Tsai CW, Yeh JW, Chen SK, Chang SY. Structural evolution during mechanical milling and subsequent annealing of Cu-Ni-Al-Co-Cr-Fe-Ti alloys. Mater. Chem. Phys., 2009, 118(2–3): 354.

[12]

Zhu ZG, Ma KH, Wang Q, Shek CH. Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys. Intermetallics, 2016, 79, 1.

[13]

Gómez-Esparza CD, Campos-Venegas K, Solis-Canto O, Alvarado-Orozco JM, Muñoz-Saldaña J, Herrera-Ramírez JM, Martínez-Sánchez R. Nanohardness and microstructure of NiCoAlFeCu and NiCoAlFeCuCr alloys produced by mechanical alloying. Microsc. Microanal., 2014, 20(S3): 2106.

[14]

Shun TT, Du YC. Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy. J. Alloys Compd., 2009, 478(1–2): 269.

[15]

Li BS, Wang YP, Ren MX, Yang C, Fu HZ. Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy. Mater. Sci. Eng. A, 2008, 498(1–2): 482.

[16]

Sheng HF, Gong M, Peng LM. Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions. Mater. Sci. Eng. A, 2013, 567, 14.

[17]

Ma Y, Jiang BB, Li CL, Wang Q, Dong C, Liaw PK, Xu F, Sun LX. The BCC/B2 morphologies in AlxNiCo-FeCr high-entropy alloys. Metals, 2017, 7(2): 57.

[18]

Chen MR, Lin SJ, Yeh JW, Chen SK, Huang YS, Tu CP. Microstructure and properties of Al0.5CoCrCuFeNiTix (x = 0–2.0) high-entropy alloys. Mater. Trans., 2006, 47(5): 1395.

[19]

Zhang KB, Fu ZY, Zhang JY, Wang WM, Lee SW, Niihara K. Characterization of nanocrystalline CoCr-FeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd., 2010, 495(1): 33.

[20]

Zhang KB, Fu ZY, Zhang JY, Wang WM, Wang H, Wang YC, Zhang QJ, Shi J. Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater. Sci. Eng. A, 2009, 508(1–2): 214.

[21]

Malinovskis P, Fritze S, Riekehr L, von Fieandt L, Cedervall J, Rehnlund D, Nyhol L, Lewin E, Jansson U. Synthesis and characterization of multicomponent (CrNbTa-TiW)C films for increased hardness and corrosion resistance. Mater. Des, 2018, 149, 51.

[22]

Gómez-Esparza CD, Camarillo-Cisneros J, Estrada-Guel I, Cabanas-Moreno JG, Herrera-Ramírez JM, Martínez-Sánchez R. Effect of Cr, Mo and Ti on the microstructure and Vickers hardness of multi-component systems. J. Alloys Compd., 2014, 615(Supplement1): S638.

[23]

Zhou YJ, Zhang Y, Wang FJ, Wang YL, Chen GL. Effect of Cu addition on the microstructure and mechanical properties of AlCoCrFeNiTi0.5 solid-solution alloy. J. Alloys Compd, 2008, 466(1–2): 201.

[24]

Guo S, Ng C, Liu CT. Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J. Alloys Compd, 2013, 557, 77.

[25]

Arzpeyma G, Gheribi AE, Medraj M. On the prediction of Gibbs free energy of mixing of binary liquid alloys. J. Chem. Thermodyn., 2013, 57, 82.

[26]

Guo S, Hu Q, Ng C, Liu CT. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics, 2013, 41, 96.

[27]

Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater., 2017, 122, 448.

[28]

Tong CJ, Chen MR, Yeh JW, Lin SJ, Chen SK, Shun TT, Chang SY. Mechanical performance of the Al x-CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A, 2005, 36, 1263.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/