A study of interparticulate strain in a hot-extruded SiCp/2014 Al composite

Ying Hu , Qiu-bao Ou-yang , Lei Yao , Sheng Chen , Lan-ting Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (4) : 523 -529.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (4) : 523 -529. DOI: 10.1007/s12613-019-1760-6
Article

A study of interparticulate strain in a hot-extruded SiCp/2014 Al composite

Author information +
History +
PDF

Abstract

We report a correlative study of strain distribution and grain structure in the Al matrix of a hot-extruded SiC particulate-reinforced Al composite (SiCp/2014 A1). Finite element method (FEM) simulation and microstructure characterization indicate that the grain structure of the Al matrix is affected by the interparticulate strain distribution in the matrix during the process. Both electron-backscattered diffraction (EBSD) and selected-area electron diffraction (SAED) indicated localized misorientation in the Al matrix after hot extrusion. Scanning transmission electron microscopy (STEM) revealed fine and recrystallized grains adjacent to the SiC particulate and elongated grains between the particulates. This result is explained in terms of recrystallization under an interparticulate strain distribution during the hot extrusion process.

Keywords

metal-matrix composites / strain distribution / recrystallization / grain structure

Cite this article

Download citation ▾
Ying Hu, Qiu-bao Ou-yang, Lei Yao, Sheng Chen, Lan-ting Zhang. A study of interparticulate strain in a hot-extruded SiCp/2014 Al composite. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(4): 523-529 DOI:10.1007/s12613-019-1760-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li SS, Su YS, Ouyang QB, Zhang D. In-situ carbon nanotube-covered silicon carbide particle reinforced aluminum matrix composites fabricated by powder metallurgy. Mater. Lett., 2016, 167, 118.

[2]

Root JM, Field DP, Nelson TW. Crystallographic texture in the friction-stir-welded metal matrix composite Al6061 with 10 vol pct Al2O3. Metall. Mater. Trans. A, 2009, 40(9): 2109.

[3]

Hong SJ, Kim HM, Huh D, Suryanarayana C, Chun BS. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites. Mater. Sci. Eng., A, 2003, 347(1–2): 198.

[4]

Xue Z, Huang Y, Li M. Particle size effect in metalli materials: A study by the theory of mechanism-based strain gradient plasticity. Acta Mater., 2002, 50(1): 149.

[5]

Mandal D, Viswanathan S. Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite. Mater. Charact., 2013, 86, 21.

[6]

Mandal D, Viswanathan S. Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 A1 matrix composite. Mater. Charact., 2013, 85, 73.

[7]

Liu G, Zhang GJ, Wang RH, Hu W, Sun J, Chen KH. Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys. Acta Mater., 2007, 55(1): 273.

[8]

Vogt R, Zhang Z, Li Y, Bonds M, Browning ND, Lavernia EJ, Schoenung JM. The absence of thermal expansion mismatch strengthening in nanostructured metal-matrix composites. Scripta Mater., 2009, 61(11): 1052.

[9]

Robinson JS, Redington W. The influence of alloy composition on residual stresses in heat treated aluminium alloys. Mater. Charact., 2015, 105, 47.

[10]

Song JY, Guo Q, Ouyang QB, Su YS, Zhang J, Lavernia EJ, Schoenung JM, Zhang D. Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al-Zn-Mg-Cu composites. Mater. Sci. Eng. A, 2015, 644, 79.

[11]

Chen ZZ, Tan ZQ, Ji G, Fan GL, Schryvers D, Ouyang QB, Li ZQ. Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites. Adv. Eng. Mater., 2015, 17(7): 1077.

[12]

Wang SY, Tang Q, Li DJ, Zou JX, Zeng XQ, Ouyang QB, Ding WJ. The hot workability of SiCp/2024 Al composite by stir casting. Mater. Manuf. Processes, 2015, 30(5): 624.

[13]

Fathy A, Ibrahim D, Elkady O, Hassan M. Evaluation of mechanical properties of 1050-Al reinforced with SiC particles via accumulative roll bonding process. J. Compos. Mater., 2019, 53(2): 209.

[14]

N.E. Mahallawy, A. Fathy, and M. Hassan, Evaluation of mechanical properties and microstructure of A1/Al-12%Si multilayer via warm accumulative roll bonding process, J. Compos. Mater., 2017. https://doi.org/10.1177/0021998317692141

[15]

Mahallawy NE, Fathy A, Abdelaziem W, Hassan M. Microstructure evolution and mechanical properties of A1/Al-12%Si multilayer processed by accumulative roll bonding (ARB). Mater. Sci. Eng., A, 2015, 647, 127.

[16]

Fathy A, Elkady O, Abu-Oqail A. Synthesis and characterization of Cu-ZrO2 nanocomposite produced by ther-mochemical process. J. Alloys Compd., 2017, 719, 411.

[17]

Fathy A. Investigation on microstructure and properties of Cu-ZrO2 nanocomposites synthesized by in situ processing. Mater. Lett., 2018, 213, 95.

[18]

Fathy A, Sadoun A, Abdelhameed M. Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al-SiC composites. Int. J. Adv. Manuf. Technol., 2014, 73(5–8): 1049.

[19]

El-Kady O, Fathy A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater. Des., 2014, 54, 348.

[20]

Wagih A, Fathy A, Ibrahim D, Elkady O, Hassan M. Experimental investigation on strengthening mechanisms in Al-SiC nanocomposites and 3D FE simulation of Vickers indentation. J. Alloys Compd., 2018, 752, 137.

[21]

Wagih A, Fathy A. Improving compressibility and thermal properties of Al-Al2O3 nanocomposites using Mg particles. J. Mater. Sci., 2018, 53(16): 11393.

[22]

Fathy A, El-Kady O. Thermal expansion and thermal conductivity characteristics of Cu-Al2O3 nanocomposites. Mater. Des., 2013, 46, 355.

[23]

Zhang J, Ouyang QB, Guo Q, Li ZQ, Fan GL, Su YS, Jiang L, Lavernia EJ, Schoenung JM, Zhang D. 3D microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites. Compos. Sci. Technol., 2016, 123, 1.

[24]

Jiang H, Fan ZG, Xie CY. 3D finite element simulation of deformation behavior of CP-Ti and working load during multi-pass equal channel angular extrusion. Mater. Sci. Eng. A, 2008, 485(1–2): 409.

[25]

Jiang H, Fan ZG, Xie CY. Finite element analysis of temperature rise in CP-Ti during equal channel angular extrusion. Mater. Sci. Eng. A, 2009, 513–514, 109.

[26]

Ocelík V, Vreeling JA, De Hosson JTM. EBSP study of reaction zone in SiC/Al metal matrix composite prepared by laser melt injection. J. Mater. Sci., 2001, 36(20): 4845.

[27]

Kamaya M. Assessment of local deformation using EBSD: Quantification of local damage at grain boundaries. Mater. Charact., 2012, 66, 56.

[28]

Guo J, Amira S, Gougeon P, Chen XG. Effect of the surface preparation techniques on the EBSD analysis of a friction stir welded AA1100-B4C metal matrix composite. Mater. Charact., 2011, 62(9): 865.

[29]

Luo ZP, Song YG, Zhang SQ. A TEM study of the microstructure of SiCp/Al composite prepared by pressure less infiltration method. Scripta Mater., 2001, 45(10): 1183.

[30]

Zhang WL, Wang JX, Yang F, Sun ZQ, Gu MY. Recrystallization kinetics of cold-rolled squeeze-cast Al/SiC/15w composites. J. Compos. Mater., 2006, 40(12): 1117.

[31]

Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena, 2004, Oxford, Pergamon Press 451.

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/