Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping

Ao Li , Xin-peng Zhao , Hai-you Huang , Yuan Ma , Lei Gao , Yan-jing Su , Ping Qian

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (4) : 507 -515.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (4) : 507 -515. DOI: 10.1007/s12613-019-1758-0
Article

Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping

Author information +
History +
PDF

Abstract

Brittleness is a dominant issue that restricts potential applications of Mg2Si intermetallic compounds (IMC). In this paper, guided by first-principles calculations, we found that Al doping will enhance the ductility of Mg2Si. The underlying mechanism is that Al doping could reduce the electronic exchange effect between Mg and Si atoms, and increase the volume module/shear modulus ratio, both of which are beneficial to the deformation capability of Mg2Si. Experimental investigations were then carried out to verify the calculation results with Al doping contents ranging from Al-free to 10wt%. Results showed that the obtained ductile-brittle transition temperature of the Mg2Si-Al alloy decreased and the corresponding ductility increased. Specifically, the ductile-brittle transition temperature could be reduced by about 100°C. When the content of Al reached 6wt%, α-Al phase started to precipitate, and the ductile-brittle transition temperature of the alloy no longer decreased.

Keywords

Mg alloy / intermetallic compound / first-principles calculations / mechanical properties / ductile-brittle transition temperature

Cite this article

Download citation ▾
Ao Li, Xin-peng Zhao, Hai-you Huang, Yuan Ma, Lei Gao, Yan-jing Su, Ping Qian. Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(4): 507-515 DOI:10.1007/s12613-019-1758-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang DW, Li Z, Huang HB. New Mg2Si based alloy for automobile engine cylinder liner. J. Wuhan Univ. Technol. - Mater. Sci. Ed., 2011, 26(4): 797.

[2]

Mordike BL, Ebert T. Magnesium: Properties—applications—potential. Mater. Sci. Eng. A, 2001, 302(1): 37.

[3]

Riffel M, Schilz J. Mechanical alloying of Mg2Si. Scripta Metall. Mater, 1995, 32(12): 1951.

[4]

Yoshinaga M, Iida T, Noda M, Endo T, Takanashi Y. Bulk crystal growth of Mg2Si by the vertical Bridgman method. Thin Solid Films, 2004, 461(1): 86.

[5]

Tatsuoka H, Takagi N, Okaya S, Sato Y, Inaba T, Ohishi T, Yamamoto A, Matsuyama T, Kuwabara H. Microstructures of semiconducting silicide layers grown by novel growth techniques. Thin Solid Films, 2004, 461(1): 57.

[6]

Kumar KKA, Viswanath A, Pillai UTS, Pai BC, Chakraborty M. Changes in solidification morphology of Mg-Si alloys by Ca additions. Trans. Indian Inst. Met., 2012, 65(6): 695.

[7]

Battiston S, Fiameni S, Saleemi M, Boldrini S, Famengo A, Agresti F, Stingaciu M, Toprak MS, Fabrizio M, Barison S. Synthesis and characterization of Al-doped Mg2Si thermoelectric materials. J. Electron. Mater., 2013, 42(7): 1956.

[8]

Li GH, Gill HS, Varin RA. Magnesium silicide intermetallic alloys. Metall. Trans. A, 1993, 24(11): 2383.

[9]

Yue YL, Gong YS, Wu HT, Wang CB, Zhang LM. Fabrication and mechanical properties of TiC/TiAl composites. J. Wuhan Univ. Technol. - Mater. Sci. Ed., 2004, 19(1): 1.

[10]

Qu XH, Huang BY, Lei CM. Room temperature brittleness and improvement of TiAl orderd alloy. Rare Met., 1993, 17(4): 295.

[11]

Chen SQ, Qu XH, Lei CM, Huang BY. Room temperature mechanical properties of ordered TiAl+La alloys. Acta Metall. Sin., 1994, 30(1): 20.

[12]

Kaur K, Kumar R. Electronic and thermoelectric properties of Al doped Mg2Si material: DFT study. Mater. Today: Proc., 2016, 3(6): 1785.

[13]

Hirayama N, Iida T, Funashima H, Morioka S, Sakamoto M, Nishio K, Kogo Y, Takanashi Y, Hamada N. First-principles study on structural and thermoelectric properties of Al- and Sb-doped Mg2Si. J. Electron. Mater., 2015, 44(6): 1656.

[14]

Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133.

[15]

Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B, 1993, 48(17): 13115.

[16]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169.

[17]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865.

[18]

Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1993, 48(7): 4978.

[19]

Blöchl PE. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953.

[20]

Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188.

[21]

Tani J, Kido H. First-principles and experimental studies of impurity doping into Mg2Si. Intermetallics, 2008, 16(3): 418.

[22]

Xiong W, Qin XY, Kong MG, Li C. Synthesis and properties of bulk nanocrystalline Mg2Si through ball-milling and reactive hot-pressing. Trans. Nonferrous Met. Soc. China, 2006, 16(5): 987.

[23]

Li C, Wu YP, Li H, Wu YY, Liu XF. Effect of Ni on eutectic structural evolution in hypereutectic Al-Mg2Si cast alloys. Mater. Sci. Eng. A, 2010, 528(2): 573.

[24]

Viat A, Guillonneau G, Fouvry S, Kermouche G, Sao Joao S, Wehrs J, Michler J, Henne JF. Brittle to ductile transition of tribomaterial in relation to wear response at high temperatures. Wear, 2017, 392–393, 60.

[25]

Pugh SF. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London Edinburgh Dublin Philos. Mag. J. Sci., 1954, 45(367): 823.

[26]

Sin’Ko GV, Smirnov N. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp A1 crystals under pressure. J. Phys.: Condens. Matter, 2002, 14(29): 6989.

[27]

Voigt W. Lehrbuch der Kristallphysik, 1966, Wiesbaden, Springer

[28]

Reuss A. Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech., 1929, 9, 49.

[29]

Hill R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A, 1952, 65(5): 349.

[30]

Hill R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids, 1963, 11(5): 357.

[31]

Schmidt RD, Case ED, Giles J, Ni JE, Hogan TP. Room-temperature mechanical properties and slow crack growth behavior of Mg2Si thermoelectric materials. J. Electron. Mater., 2012, 41(6): 1210.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/