Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells

Huan-yu Zhang , Rui Li , Wen-wu Liu , Mei Zhang , Min Guo

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (4) : 387 -403.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (4) : 387 -403. DOI: 10.1007/s12613-019-1748-2
Invited Review

Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells

Author information +
History +
PDF

Abstract

The trend toward lead-free or lead-less perovskite solar cells (PSCs) has attracted increasing attention over the past few years because the toxicity of lead (Pb) is one of the substantial restrictions for large-scale applications. Researchers have investigated the viability of substituting Pb with other elements (group 14 elements, group 2 elements, transition-metal elements, and group 13 and 15 elements) in the three-dimensional (3D) perovskites by theoretical calculations and experimental explorations. In this paper, recent research progress in Pb-less and Pb-free PSCs on the perovskite compositions, deposition methods, and device structures are summarized and the main problems that hinder the enhancement of device efficiency and stability are discussed in detail. To date, the fully Sn-based PSCs have shown a power conversion efficiency (PCE) of 8.12% and poor device stability. However, lead-less PSCs have shown higher PCE and a better stability. In addition, the introduction of double-perovskite materials also draws researchers’ attention. We believe that the engineering of elemental composition, perovskite deposition methods, and interfacial modification are critical for the future development of Pb-less and Pb-free PSCs.

Keywords

perovskite solar cells / lead-free perovskite materials / lead-less perovskite materials / composition engineering / stability

Cite this article

Download citation ▾
Huan-yu Zhang, Rui Li, Wen-wu Liu, Mei Zhang, Min Guo. Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(4): 387-403 DOI:10.1007/s12613-019-1748-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050.

[2]

Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun., 2003, 127(9-10): 619.

[3]

Baikie T, Fang YN, Kadro JM, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A, 2013, 1(18): 5628.

[4]

Stoumpos CC, Malliakas CD, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem., 2013, 52(15): 9019.

[5]

Sun SY, Salim T, Mathews N, et al. The origin of high efficiency in low-temperature solution-processable bilayer or-ganometal halide hybrid solar cells. Energy Environ. Sci., 2013, 7(1): 399.

[6]

H.S. Kim, C.R. Lee, J.H. Im, et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2(2012), art. No. 591.

[7]

NREL, Best Research-Cell Efficiencies [2018-07-16]. https://doi.org/www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg

[8]

Gratzel M. The light and shade of perovskite solar cells. Nat. Mater., 2014, 13(9): 838.

[9]

Li SJ, Lin Y, Tan WW, et al. Preparation and performance of dye-sensitized solar cells based on ZnO-modified TiO2 electrodes. Int. J. Miner. Metall. Mater., 2010, 17(1): 92.

[10]

Saliba M, Matsui T, Seo JY, et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci., 2016, 9(6): 1989.

[11]

Yang WS, Park BW, Jung EH, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376.

[12]

Liu CW, Zhu RX, Ng A, et al. Investigation of high performance TiO2 nanorod array perovskite solar cells. J. Mater. Chem. A, 2017, 5(30): 15970.

[13]

Son DY, Im JH, Kim HS, Park NG. 11% efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system. J. Phys. Chem. C, 2014, 118(30): 16567.

[14]

Li JF, Zhang ZL, Gao HP, Zhang Y, Mao YL. Effect of solvents on the growth of TiO2 nanorods and their perovskite solar cells. J. Mater. Chem. A, 2015, 3(38): 19476.

[15]

Jeng JY, Chiang YF, Lee MH, et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater., 2013, 25(27): 3727.

[16]

Kim HS, Im SH, Park NG. Organolead halide perovskite: New horizons in solar cell research. J. Phys. Chem. C, 2014, 118(11): 5615.

[17]

Aslan F, Adam G, Stadler P, Göktaş A, Mutlu IH, Sariciftci NS. Sol-gel derived In2S3 buffer layers for inverted organic photovoltaic cells. Sol. Energy, 2014, 108, 230.

[18]

Yang G, Tao H, Qin PL, Ke WJ, Fang GJ. Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A, 2016, 4(11): 3970.

[19]

Lian JR, Lu B, Niu FF, Zeng PJ, Zhan XW. Electron-transport materials in perovskite solar cells. Small Methods, 2018, 2(10): 1800082.

[20]

Xia YP, Wang PH, Shi SW, et al. Effect of oxygen partial pressure and transparent substrates on the structural and optical properties of ZnO thin films and their performance in energy harvesters. Int. J. Miner. Metall. Mater., 2017, 24(6): 675.

[21]

Gao P, Grätzel M, Nazeeruddin MK. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci., 2014, 7(8): 2448.

[22]

Small, 2018, 14(31) art. No. 1801154

[23]

Zhang P, Wu J, Zhang T, et al. Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater., 2018, 30(3): 1703737.

[24]

Goktas A, Aslan F, Yesilata B, Boz I. Physical properties of solution processable n-type Fe and Al co-doped ZnO nanostructured thin films: Role of Al doping levels and annealing. Mater. Sci. Semicon. Process., 2018, 75, 221.

[25]

Zhu ZQ, Zhou J. Rapid growth of ZnO hexagonal tubes by direct microwave heating. Int. J. Miner. Metall. Mater., 2010, 17(1): 80.

[26]

Yang XC, Wang HX, Cai B, Yu Z, Sun LC. Progress in hole-transporting materials for perovskite solar cells. J. Energy Chem., 2018, 27(3): 650.

[27]

Yan WB, Ye SY, Li YL, et al. Hole-transporting materials in inverted planar perovskite solar cells. Adv. Energy Mater., 2016, 6(17): 1600474.

[28]

Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on me-so-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643.

[29]

Xiao MD, Huang FZ, Huang WC, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem., 2014, 53(37): 9898.

[30]

Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater., 2014, 13(9): 897.

[31]

Ahn N, Son DY, Jang IH, Kang SM, Choi M, Park NG. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best Efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc., 2015, 137(27): 8696.

[32]

Chen Q, Zhou HP, Hong ZR, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc., 2014, 136(2): 622.

[33]

Xiao ZG, Bi C, Shao YC, et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci., 2014, 7(8): 2619.

[34]

Yang WS, Noh JH, Jeon NJ, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234.

[35]

Yang L, Barrows AT, Lidzey DG, Wang T. Recent progress and challenges of organometal halide perovskite solar cells. Rep. Prog. Phys., 2016, 79(2): 026501.

[36]

Noh JH, Im SH, Heo JH, Mandal TN, Seok SI. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett., 2013, 13(4): 1764.

[37]

Niu GD, Guo XD, Wang LD. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A, 2015, 3(17): 8970.

[38]

Berhe TA, Su WN, Chen CH, et al. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci., 2016, 9(2): 323.

[39]

Jiang Q, Chu ZM, Wang PY, et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater., 2017, 29(46): 1703852.

[40]

Son DY, Lee JW, Choi YJ, et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy, 2016, 1(7): 16081.

[41]

Bi DQ, Yi CY, Luo JS, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy, 2016, 1(10): 16142.

[42]

Li X, Bi D, Yi C, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353(6294): 58.

[43]

Jeon NJ, Noh JH, Yang WS, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517(7535): 476.

[44]

Song JX, Hu WD, Wang XF, et al. HC(NH2)2PbI3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells. J. Mater. Chem. A, 2016, 4(21): 8435.

[45]

Chiang CH, Lin JW, Wu CG. One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module. J. Mater. Chem. A, 2016, 4(35): 13525.

[46]

Li L, Liu N, Xu ZQ, Chen Q, Wang XD, Zhou HP. Precise composition tailoring of mixed-cation hybrid perovs-kites for efficient solar cells by mixture design methods. ACS Nano, 2017, 11(9): 8804.

[47]

Niu TQ, Lu J, Munir R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater., 2018, 30(16): 1706576.

[48]

Zheng XP, Chen B, Dai J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy, 2017, 2(7): 17102.

[49]

Chen Q, Zhou H, Song TB, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett., 2014, 14(7): 4158.

[50]

Chen JZ, Seo JY, Park NG. Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN interface. Adv. Energy Mater., 2018, 8(12): 1702714.

[51]

Zai HC, Zhu C, Xie HP, et al. Congeneric incorporation of CsPbBr3 nanocrystals in a hybrid perovskite heterojunction for photovoltaic efficiency enhancement. ACS Energy Lett., 2017, 3(1): 30.

[52]

Solar RRL, 2018, 2(9) art. No. 1800069

[53]

Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat. Photonics, 2014, 8(7): 506.

[54]

Adv. Sci., 2018, 5(5) art. No. 1700387

[55]

Zhu WD, Bao CX, Li FM, et al. A halide exchange engineering for CH3NH3PbI3–xBrx perovskite solar cells with high performance and stability. Nano Energy, 2016, 19, 17.

[56]

Li Z, Yang MJ, Park JS, Wei SH, Berry JJ, Zhu K. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater., 2016, 28(1): 284.

[57]

Smecca E, Numata Y, Deretzis I, et al. Stability of solution-processed MAPbI3 and FAPbI3 layers. Phys. Chem. Chem. Phys., 2016, 18(19): 13413.

[58]

Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci., 2014, 7(3): 982.

[59]

Ogomi Y, Morita A, Tsukamoto S, et al. CH3NH3SnxPb(1–x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett., 2014, 5(6): 1004.

[60]

Noel NK, Stranks SD, Abate A, et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci., 2014, 7(9): 3061.

[61]

Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics, 2014, 8(6): 489.

[62]

Koh TM, Krishnamoorthy T, Yantara N, et al. Formamidinium tin-based perovskite with low E g for photovoltaic applications. J. Mater. Chem. A, 2015, 3(29): 14996.

[63]

Liao WQ, Zhao DW, Yu Y, et al. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater., 2016, 28(42): 9333.

[64]

Sci. Adv., 2017, 3(8) art. No. e1701293

[65]

Ke WJ, Priyanka P, Vegiraju S, et al. Dopant-free tetrakis-triphenylamine hole transporting material for efficient tin-based perovskite solar cells. J. Am. Chem. Soc., 2018, 140(1): 388.

[66]

Adv. Sci., 2017, 4(11) art. No. 1700204

[67]

Yokoyama T, Cao DH, Stoumpos CC, et al. Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process. J. Phys. Chem. Lett., 2016, 7(5): 776.

[68]

Adv. Mater., 2017, 29(23) art. No. 1606964

[69]

Nat. Energy, 2016, 1(12) art. No. 16178

[70]

Ran CX, Xi J, Gao WY, et al. Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells. ACS Energy Lett., 2018, 3(3): 713.

[71]

Chung I, Lee B, He JQ, Chang RPH, Kanatzidis MG. All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485(7399): 486.

[72]

Kumar MH, Dharani S, Leong WL, et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater., 2014, 26(41): 7122.

[73]

Sabba D, Mulmudi HK, Prabhakar RR, et al. Impact of anionic Br substitution on open circuit voltage in lead free perovskite (CsSnI3–xBrx) solar cells. J. Phys. Chem. C, 2015, 119(4): 1763.

[74]

Gupta S, Bendikov T, Hodes G, Cahen D. CsSnBr3, a lead-free halide perovskite for long-term solar cell application: Insights on SnF2 addition. ACS Energy Lett., 2016, 1(5): 1028.

[75]

Moghe D, Wang LL, Traverse CJ, et al. All vapor-deposited lead-free doped CsSnBr3 planar solar cells. Nano Energy, 2016, 28, 469.

[76]

Adv. Energy Mater., 2016, 6(24) art. No. 1601130

[77]

Xu P, Chen SY, Xiang HJ, Gong XG, Wei SH. Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnl3. Chem. Mater., 2014, 26(20): 6068.

[78]

Li WZ, Li JW, Li JL, Fan JD, Mai YH, Wang LD. Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A, 2016, 4(43): 17104.

[79]

Zhu LZ, Yuh B, Schoen S, et al. Solvent-molecule-mediated manipulation of crystalline grains for efficient planar binary lead and tin triiodide perovskite solar cells. Nanoscale, 2016, 8(14): 7621.

[80]

Zuo F, Williams ST, Liang PW, Chueh CC, Liao CY, Jen AKY. Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Adv. Mater., 2014, 26(37): 6454.

[81]

C. Liu, J. Fan, H. Li, C. Zhang, and Y. Mai, Highly efficient perovskite solar cells with substantial reduction of lead content, Sci. Rep., 6(2016), art. No. 35705.

[82]

Fan JD, Liu C, Li HL, Zhang CL, Li WZ, Mai YH. Molecular Self-assembly fabrication and carrier dynamics of stable and efficient CH3NH3Pb(1–x) SnxI3 perovskite solar cells. ChemSusChem, 2017, 10(19): 3839.

[83]

Liu C, Li WZ, Li HL, Zhang CL, Fan JD, Mai YH. C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency. Nanoscale, 2017, 9(37): 13967.

[84]

Mosconi E, Umari P, De Angelis F. Electronic and optical properties of mixed Sn-Pb organohalide perovskites: A first principles investigation. J. Mater. Chem. A, 2015, 3(17): 9208.

[85]

Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc., 2014, 136(22): 8094.

[86]

Adv. Energy Mater., 2016, 6(24) art. No. 1601353

[87]

Xu XB, Chueh CC, Yang ZB, et al. Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy, 2017, 34, 392.

[88]

Kapil G, Ripolles TS, Hamada K, et al. Highly efficient 17.6% tin-lead mixed perovskite solar cells realized through spike structure. Nano Lett, 2018, 18(6): 3600.

[89]

Lee S, Kang DW. Highly efficient and stable Sn-rich perovskite solar cells by introducing bromine. ACS Appl. Mater. Interfaces, 2017, 9(27): 22432.

[90]

Liao WQ, Zhao DW, Yu Y, et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc., 2016, 138(38): 12360.

[91]

Nat. Energy, 2017, 2(4) art. No. 17018

[92]

Jeon NJ, Na H, Jung EH, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy, 2018, 3(8): 682.

[93]

Luo DY, Yang WQ, Wang ZP, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360(6396): 1442.

[94]

Tavakoli MM, Zakeeruddin SM, Grätzel M, Fan ZY. Large-grain tin-rich perovskite films for efficient solar cells via metal alloying technique. Adv. Mater., 2018, 30(11): art. No. 1705998.

[95]

Tsai CM, Wu HP, Chang ST, et al. Role of tin chloride in tin-rich mixed-halide perovskites applied as mesoscopic solar cells with a carbon counter electrode. ACS Energy Lett., 2016, 1(6): 1086.

[96]

Krishnamoorthy T, Ding H, Yan C, et al. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A, 2015, 3(47): 23829.

[97]

Kopacic I, Friesenbichler B, Hoefler SF, et al. Enhanced performance of germanium halide perovskite solar cells through compositional engineering. ACS Appl. Energy Mater., 2018, 1(2): 343.

[98]

Wang K, Liang ZQ, Wang XQ, Cui XD. Lead replacement in CH3NH3PbI3 perovskites. Adv. Electron. Mater., 2015, 1(10): art. No. 1500089.

[99]

Pazoki M, Jacobsson TJ, Hagfeldt A, Boschloo G, Edvinsson T. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals. Phys. Rev. B, 2016, 93(14): art. No. 144105.

[100]

Jacobsson TJ, Pazoki M, Hagfeldt A, Edvinsson T. Goldschmidt’s rules and strontium replacement in lead halogen perovskite solar cells: Theory and preliminary experiments on CH3NH3SrI3. J. Phys. Chem. C, 2015, 119(46): 25673.

[101]

Wu MC, Chen WC, Chan SH, Su WF. The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications. Appl. Surf. Sci., 2018, 429, 9.

[102]

Wu MC, Lin TH, Chan SH, Su WF. Improved efficiency of perovskite photovoltaics based on Ca-doped methylammonium lead halide. J. Taiwan Inst. Chem. Eng., 2017, 80, 695.

[103]

Zhang HB, Shang MH, Zheng XY, et al. Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells. Electrochim. Acta, 2017, 254, 165.

[104]

Chan SH, Wu MC, Lee KM, Chen WC, Lin TH, Su WF. Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide. J. Mater. Chem. A, 2017, 5(34): 18044.

[105]

Shai XX, Zuo LJ, Sun PY, et al. Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite. Nano Energy, 2017, 36, 213.

[106]

Lau CFJ, Zhang M, Deng XF, et al. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Lett., 2017, 2(10): 2319.

[107]

Perez-Del-Rey D, Forgács D, Hutter EM, et al. Strontium insertion in methylammonium lead iodide: Long charge carrier lifetime and high fill-factor solar cells. Adv. Mater., 2016, 28(44): 9839.

[108]

Zhang H, Wang H, Williams ST, et al. SrCl2 derived perovskite facilitating a high efficiency of 16% in hole-conductor-free fully printable mesoscopic perovskite solar cells. Adv. Mater., 2017, 29(15): art. No. 1606608.

[109]

Boix PP, Agarwala S, Koh TM, Mathews N, Mhaisalkar SG. Perovskite solar cells: Beyond methylammonium lead iodide. J. Phys. Chem. Lett., 2015, 6(5): 898.

[110]

Nie ZH, Yin J, Zhou HW, et al. Layered and Pb-free organic-inorganic perovskite materials for ultraviolet photores-ponse: (010)-oriented (CH3NH3)2MnCl4 thin film. ACS Appl. Mater. Interfaces, 2016, 8(41): 28187.

[111]

Cui XP, Jiang KJ, Huang JH, et al. Cupric bromide hybrid perovskite heterojunction solar cells. Synth. Met., 2015, 209, 247.

[112]

Cortecchia D, Dewi HA, Yin J, et al. Lead-free MA2CuClxBr4–x hybrid perovskites. Inorg. Chem., 2016, 55(3): 1044.

[113]

Li XL, Li BC, Chang JH, et al. (C6H5CH2NH3)2CuBr4: A lead-free, highly stable two-dimensional perovskite for solar cell applications. ACS Appl. Energy Mater., 2018, 1(6): 2709.

[114]

Liu XX, Huang TJ, Zhang LY, et al. Highly stable, new, organic-inorganic perovskite (CH3NH3)2PdBr4: Synthesis, structure, and physical properties. Chemistry, 2018, 24(19): 4991.

[115]

Frolova LA, Anokhin DV, Gerasimov KL, Dremova NN, Troshin PA. Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells. J. Phys. Chem. Lett., 2016, 7(21): 4353.

[116]

Jahandar M, Heo JH, Song CE, et al. Highly efficient metal halide substituted CH3NH3I(PbI2)1–x(CuBr2)x planar perovskite solar cells. Nano Energy, 2016, 27, 330.

[117]

Jin JJ, Li H, Chen C, et al. Enhanced performance of perovskite solar cells with zinc chloride additives. ACS Appl. Mater. Interfaces, 2017, 9(49): 42875.

[118]

Klug MT, Osherov A, Haghighirad AA, et al. Tailoring metal halide perovskites through metal substitution: Influence on photovoltaic and material properties. Energy Environ. Sci., 2017, 10(1): 236.

[119]

Li M, Wang ZK, Zhuo MP, et al. Pb-Sn-Cu ternary organometallic halide perovskite solar cells. Adv. Mater., 2018, 30(20): art. No. 1800258.

[120]

Niki S, Contreras M, Repins I, et al. CIGS absorbers and processes. Prog. Photovolt: Res. Appl., 2010, 18(6): 453.

[121]

Chen SY, Walsh A, Gong XG, Wei SH. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater., 2013, 25(11): 1522.

[122]

Zhou HP, Hsu WC, Duan HS, et al. CZTS nanocrystals: A promising approach for next generation thin film photo-voltaics. Energy Environ. Sci., 2013, 6(10): 2822.

[123]

Zhang J, Shang MH, Wang P, et al. n-Type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells. ACS Energy Lett., 2016, 1(3): 535.

[124]

Oku T, Ohishi Y, Suzuki A. Effects of antimony addition to perovskite-type CH3NH3PbI3 photovoltaic devices. Chem. Lett., 2016, 45(2): 134.

[125]

Chatterjee S, Dasgupta U, Pal AJ. Sequentially deposited antimony-doped CH3NH3PbI3 films in inverted planar heterojunction solar cells with a high open-circuit voltage. J. Phys. Chem. C, 2017, 121(37): 20177.

[126]

Eperon GE, Paterno GM, Sutton RJ, et al. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A, 2015, 3(39): 19688.

[127]

Hu YQ, Bai F, Liu XB, et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett., 2017, 2(10): 2219.

[128]

Wang ZK, Li M, Yang YG, et al. High efficiency Pb–In binary metal perovskite solar cells. Adv. Mater., 2016, 28(31): 6695.

[129]

Singh A, Boopathi KM, Mohapatra A, Chen YF, Li G, Chu CW. Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9. ACS Appl. Mater. Interfaces, 2018, 10(3): 2566.

[130]

Harikesh PC, Mulmudi HK, Ghosh B, et al. Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics. Chem. Mater., 2016, 28(20): 7496.

[131]

Hebig JC, Kühn I, Flohre J, Kirchartz T. Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett., 2016, 1(1): 309.

[132]

Abulikemu M, Ould-Chikh S, Miao XH, et al. Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9. J. Mater. Chem. A, 2016, 4(32): 12504.

[133]

Johansson MB, Zhu HM, Johansson EMJ. Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells. J. Phys. Chem. Lett., 2016, 7(17): 3467.

[134]

McDonald C, Ni CS, Švrček V, et al. Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystals. Nanoscale, 2017, 9(47): 18759.

[135]

Singh T, Kulkarni A, Ikegami M, Miyasaka T. Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications. ACS Appl. Mater. Interfaces, 2016, 8(23): 14542.

[136]

Kim Y, Yang ZY, Jain A, et al. Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics. Angew. Chem. Int. Ed., 2016, 128(33): 9586.

[137]

Park BW, Philippe B, Zhang XL, Rensmo H, Boschloo G, Johansson EMJ. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater., 2016, 27(43): 6806.

[138]

Ran CX, Wu ZX, Xi J, et al. Construction of compact methylammonium bismuth iodide film promoting lead-free inverted planar heterojunction organohalide solar cells with open-circuit voltage over 0.8 V. J. Phys. Chem. Lett., 2017, 8(2): 394.

[139]

Shin SS, Baena JPC, Kurchin RC, et al. Solvent-engineering method to deposit compact bismuth-based thin films: Mechanism and application to photovoltaics. Chem. Mater., 2018, 30(2): 336.

[140]

Slavney AH, Hu T, Lindenberg AM, Karunadasa HI. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc., 2016, 138(7): 2138.

[141]

McClure ET, Ball MR, Windl W, Woodward PM. Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater., 2016, 28(5): 1348.

[142]

Volonakis G, Filip MR, Haghighirad AA, et al. Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett., 2016, 7(7): 1254.

[143]

Wei FX, Deng ZY, Sun SJ, et al. The synthesis, structure and electronic properties of a lead-free hybrid inorganic-organic double perovskite (MA)2KBiCl6 (MA = methylammonium). Mater. Horiz., 2016, 3(4): 328.

[144]

Wei FX, Deng ZY, Sun SJ, et al. Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr6. Chem. Mater., 2017, 29(3): 1089.

[145]

Greul E, Petrus ML, Binek A, Docampo P, Bein T. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A, 2017, 5(37): 19972.

[146]

Ning WH, Wang F, Wu B, et al. Long electron-hole diffusion length in high-quality lead-free double perovskite films. Adv. Mater., 2018, 30(20): art. No. 1706246.

[147]

Wu CC, Zhang QH, Liu Y, et al. The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci., 2018, 5(3): art. No. 1700759.

[148]

Gao WY, Ran CX, Xi J, et al. High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar hetero-junction solar cells with 2.2% efficiency. ChemPhysChem, 2018, 19(14): 1696.

[149]

Volonakis G, Haghighirad AA, Milot RL, et al. Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett., 2017, 8(4): 772.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/