Relationship between the microstructure and properties of thermomechanically processed Fe−17Mn and Fe−17Mn−3Al steels

Renuprava Dalai , Siddhartha Das , Karabi Das

International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (1) : 64 -75.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2019, Vol. 26 ›› Issue (1) : 64 -75. DOI: 10.1007/s12613-019-1710-3
Article

Relationship between the microstructure and properties of thermomechanically processed Fe−17Mn and Fe−17Mn−3Al steels

Author information +
History +
PDF

Abstract

Two austenitic Mn steels (Fe−17Mn and Fe−17Mn−3Al (wt%, so as the follows)) were subjected to thermomechanical processing (TMP) consisting of forging followed by solutionization and hot rolling. The rolled samples were annealed at 650 and 800°C to relieve the internal stress and to induce recrystallization. The application of TMP and heat treatment to the Fe−17Mn/Fe−17Mn−3Al steels refined the austenite grain size from 169 μm in the as-solutionized state to 9–13 μm, resulting in a substantial increase in hardness from HV 213 to HV 410 for the Fe−17Mn steel and from HV 210 to HV 387 for the Fe−17Mn−3Al steel. The elastic modulus values, as evaluated by the nanoindentation technique, increased from (175 ± 11) to (220 ± 12) GPa and from (163 ± 15) to (205 ± 13) GPa for the Fe−17Mn and Fe−17Mn−3Al steels, respectively. The impact energy of the thermomechanically processed austenitic Mn steels was lower than that of the steels in their as-solutionized state. The addition of Al to the Fe−17Mn steel decreased the hardness and elastic modulus but increased the impact energy.

Keywords

austenitic manganese steel (AMS) / thermomechanical processing (TMP) / microstructure / property / hardness / elastic modulus

Cite this article

Download citation ▾
Renuprava Dalai, Siddhartha Das, Karabi Das. Relationship between the microstructure and properties of thermomechanically processed Fe−17Mn and Fe−17Mn−3Al steels. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(1): 64-75 DOI:10.1007/s12613-019-1710-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Avery H.S. Austenitic Manganese Steel. Metals Handbook, 1961, USA, American Society for Metals 834.

[2]

Adv. Tribol., 2009, 2009(685648)

[3]

Srivastava A.K., Das K. Microstructure and abrasive wear study of (Ti,W)C-reinforced high-manganese austenitic steel matrix composite. Mater. Lett., 2008, 62(24): 3947.

[4]

Wang Y.F., Qiu C.M., Lu C.G., Zhang L. Effect of conventional cold rolling on wear-resisting performance of high manganese steel. Adv. Mater. Res., 2011, 284–286, 1493.

[5]

Mendez J., Ghoreshy M., Mackay W.B.F., Smith T.J.N., Smith R.W. Weldability of austenitic manganese steel. Mater. Process. Technol., 2008, 153–154, 596.

[6]

Zhang F.C., Lei T.Q. A study of friction-induced martensitic transformation for austenitic manganese steel. Wear, 1997, 212(2): 195.

[7]

Allahkaram S.R. Causes of catastrophic failure of high Mn steel utilized as crusher overlaying shields. Int. J. Eng. Trans. B, 2008, 21(1): 55.

[8]

El-Mahallawi I., Abdel-Karim R., Naguib A. Evaluation of effect of chromium on wear performance of high manganese steel. Mater. Sci. Technol., 2001, 17(11): 1385.

[9]

Moghaddam E.G., Varahram N., Davami P. On the comparison of microstructural characteristics and mechanical properties of high-vanadium austenitic manganese steels with the Hadfield steel. Mater. Sci. Eng. A, 2012, 532, 260.

[10]

Torabi S.A., Amini K., Naseri M. Investigating the effect of manganese content on the properties of high manganese austenitic steels. Int. J. Adv. Des. Manuf. Technol., 2017, 10(1): 75.

[11]

Lu D.S., Liu Z.Y., Li W., Liao Z., Tian H., Xian J.Z. Influence of carbon content on wear resistance and wear mechanism of Mn13Cr2 and Mn18Cr2 cast steels. China Foundary, 2015, 12(1): 39.

[12]

Ge S.R., Wang Q.L., Wang J.X. The impact wear-resistance enhancement mechanism of medium manganese steel and its applications in mining machines. Wear, 2017, 376–377, 1097.

[13]

Lee Y.K., Han J. Current opinion in medium manganese steel. Mater. Sci. Technol., 2014, 31(7): 843.

[14]

Wang J., Wang Q.L., Zhang X., Zhang D.K. Impact and rolling abrasive wear behavior and hardening mechanism for hot-rolled medium-manganese steel. J. Tribol., 2018, 140(3): 1.

[15]

Si H.T., Xiong R.L., Song F., Wen Y.H., Peng H.B. Wear resistance of austenitic steel Fe-17Mn-6Si-0.3C with high silicon and high manganese. Acta Metall. Sin. Engl. Lett., 2014, 27(2): 352.

[16]

Wen Y.H., Peng H.B., Si H.T., Xiong R.L., Raabe D. A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel. Mater. Des., 2014, 55, 798.

[17]

Prasad C., Bhuyan P., Kaithwas C., Saha R., Mandal S. Microstructure engineering by dispersing nano-spheroid cementite in ultrafine-grained ferrite and its implications on strength-ductility relationship in high carbon steel. Mater. Des., 2018, 139, 324.

[18]

Jeong D.H., Gonzalez F., Palumbo G., Aust K., Erb U. The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings. Scripta Mater., 2001, 44(3): 493.

[19]

El-Bitar T.A., El-Banna E.M. Improvement of austenitic Hadfield Mn-steel properties by thermomechanical processing. Can. Metall. Q., 2000, 39(3): 361.

[20]

Goldberg A., Ruano O.A., Sherby O.D. Development of ultrafine microstructures and superplasticity in Hadfield manganese steels. Mater. Sci. Eng. A, 1992, 150(2): 187.

[21]

Kang S., Jung Y.S., Jun J.H., Lee Y.K. Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0.6C-1.5 Al TWIP steel. Mater. Sci. Eng. A, 2010, 527(3): 745.

[22]

Zuidema B.K., Subramanyam D.K., Leslie W.C. The ef fect of aluminum on the work hardening and wear resistance of Hadfield manganese steel. Metall. Trans. A, 1987, 18(9): 1629.

[23]

Smith R.W., Mackay W.B.F. Austenitic manganese steels-developments for heavy haul rail transportation. Can. Metall. Q., 2003, 42(3): 333.

[24]

Mussert K.M., Vellinga W.P., Bakker A., Van Der Zwaag S. A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061-Al2O3 MMC. J. Mater. Sci., 2002, 37(4): 789.

[25]

Leggoe J.W. Determination of the elastic modulus of microscale ceramic particles via nanoindentation. J. Mater. Res., 2004, 19(8): 2437.

[26]

Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res., 2004, 19(1): 3.

[27]

Shuman D.J., Costa A.L.M., Andrade M.S. Calculating the elastic modulus from nanoindentation and microindentation reload curves. Mater. Charact., 2007, 58(4): 380.

[28]

Dieter G.E. Mechanical Metallurgy, 1986, New York, McGraw Hill UK Ltd. 280.

[29]

Helth A., Pilz S., Kirsten T., Giebeler L., Freudenberger J., Calin M., Eckert J., Gebert A. Effect of thermomechanical processing on the mechanical biofunctionality of a low modulus Ti-40Nb alloy. J. Mech. Behav. Biomed. Mater., 2017, 65, 137.

[30]

Otomo T., Matsumoto H., Nomura N., Chiba A. Influence of cold-working and subsequent heat-treatment on Young’s modulus and strength of Co-Ni-Cr-Mo alloy. Mater. Trans., 2010, 51(3): 434.

[31]

Torrents A., Yang H., Mohamed F.A. Effect of annealing on hardness and the modulus of elasticity in bulk nanocrystalline nickel. Metall. Mater. Trans. A, 2010, 41(3): 621.

[32]

Reeh S., Music D., Gebhardt T., Kasprzak M., Japel T., Zaefferer S., Raabe D., Richter S., Schwedt A., Mayer J., Wietbrock B., Hirt G., Schneider J.M. Elastic properties of face-centred cubic Fe-Mn-C studied by nanoindentation and ab initio calculations. Acta Mater., 2012, 60(17): 6025.

[33]

Chen C., Feng X.Y., Lv B., Yang Z.N., Zhang F.C. A study on aging carbide precipitation behavior of hadfield steel by dynamic elastic modulus. Mater. Sci. Eng. A, 2016, 677, 446.

[34]

Singh D., Rao P.N., Jayaganthan R. Microstructures and impact toughness behavior of Al 5083 alloy processed by cryorolling and afterwards annealing. Int. J. Miner. Metall. Mater., 2013, 20(8): 759.

[35]

Wang C.F., Wang M.Q., Shi J., Hui W.J., Dong H. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel. J. Mater. Sci. Technol., 2007, 23(5): 659.

[36]

Astaf’ev A.A. Effect of grain size on the properties of manganese austenitic steel 110G13L. Met. Sci. Heat Treat., 1997, 39(5): 198.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/