Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors

Meng Ren , Cheng-yun Zhang , Yue-lin Wang , Jin-jun Cai

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (12) : 1482 -1492.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (12) : 1482 -1492. DOI: 10.1007/s12613-018-1703-7
Article

Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors

Author information +
History +
PDF

Abstract

N-doped carbons were fabricated from zeolite-templated carbon via modification with melamine and mild KOH activation. The N-doping treatment and KOH activation slightly lowered the surface areas of pristine zeolite-templated carbon; nonetheless, N-doped carbons with a lower surface area exhibited much higher capacitance and cycling stability as fabricated into symmetric supercapacitor. Significantly, N-doped carbon obtained at 700°C showed a capacitance of 45.7 F/g at 0.1 A/g and 42.0 F/g at 10 A/g for the fabricated supercapacitor with 6 M KOH electrolyte, with 92% retention of initial capacitance as current density increased up to 100-fold. This performance was attributed to the dual contribution of electric double-layer capacitance and pseudo-capacitance. The assembled supercapacitor also exhibited excellent cycling stability, with 91% capacitance retention at 10 A/g after 10000 cycles.

Keywords

zeolite template / porous carbon / nitrogen-doping / chemical activation / supercapacitor

Cite this article

Download citation ▾
Meng Ren, Cheng-yun Zhang, Yue-lin Wang, Jin-jun Cai. Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(12): 1482-1492 DOI:10.1007/s12613-018-1703-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Su D.S., Schloögl R. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem, 2010, 3(2): 136.

[2]

Wang G., Zhang L., Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012, 41(2): 797.

[3]

Periasamy A.P., Ravindranath R., Roy P., Wu W.P., Chang H.T., Veerakkumar P.V., Liu S.B. Carbon–boron core–shell microspheres for the oxygen reduction reaction. J. Mater. Chem. A, 2016, 4(33): 12987.

[4]

Hulicova–Jurcakova D., Kodama M., Shiraishi S., Hatori H., Zhu Z.H., Lu G.Q. Nitrogen–enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv. Funct. Mater., 2009, 19(11): 1800.

[5]

Cordero–Lanzac T., Rosas J.M., García–Mateos F.J., Ternero–Hidalgo J.J., Palomo J., Rodríguez–Mirasol J., Cordero T. Role of different nitrogen functionalities on the electrochemical performance of activated carbons. Carbon, 2018, 126, 65.

[6]

Hu L.T., Hou J.X., Ma Y., Li H.Q., Zhai T.Y. Multi–heteroatom self–doped porous carbon derived from swim bladders for large capacitance supercapacitors. J. Mater. Chem. A, 2016, 4(39): 15006.

[7]

Wan L., Shamsaei E., Easton C.D., Yu D.B., Liang Y., Chen X.F., Abbasi Z., Akbari A., Zhang X.W., Wang H.T. ZIF–8 derived nitrogen–doped porous carbon/carbon nanotube composite for high–performance supercapacitor. Carbon, 2017, 121, 330.

[8]

Korenblit Y., Rose M., Kockrick E., Borchardt L., Kvit A.V., Kaskel S., Yushin G. High–rate electrochemical capacitors based on ordered mesoporous silicon carbide–derived carbon. ACS Nano, 2010, 4(3): 1337.

[9]

Zhou M., Pu F., Wang Z., Guan S.Y. Nitrogen–doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon, 2014, 68, 185.

[10]

Xu B., Hou S.S., Zhang F.L., Cao G.P., Chu M., Yang Y.S. Nitrogen–doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors. J. Electroanal. Chem., 2014, 712, 146.

[11]

Ma Z.X., Kyotani T., Liu Z., Terasaki O., Tomita A. Very high surface area microporous carbon with a three–dimensional nano–array structure synthesis and its mo lecular structure. Chem. Mater., 2001, 13(12): 4413.

[12]

Ania C.O., Khomenko V., Raymundo–Piñero E., Parra J.B., Béguin F. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv. Funct. Mater., 2007, 17(11): 1828.

[13]

Zhou J., Li W., Zhang Z.S., Wu X.Z., Xing W., Zhuo S.P. Effect of cation nature of zeolite on carbon replicas and their electrochemical capacitance. Electrochim. Acta, 2013, 89, 763.

[14]

Li W., Zhou J., Xing W., Zhuo S.P., Lv Y.M. Preparation of microporous carbon using a zeolite HY template and its capacitive performance. Acta Phys. Chim. Sin., 2011, 27(3): 620.

[15]

Leyva–García S., Nueangnoraj K., Lozano–Castelló D., Nishihara H., Kyotani T., Morallón E., Cazorla–Amorós D. Characterization of a zeolite–templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy. Carbon, 2015, 89, 63.

[16]

Mostazo–López M.J., Ruiz–Rosas R., Castro–Muñiz A., Nishihara H., Kyotani T., Morallón E., Cazorla–Amorós D. Ultraporous nitrogen–doped zeolite–templated carbon for high power density aqueous–based supercapacitors. Carbon, 2018, 129, 510.

[17]

Stadie N.P., Wang S.T., Kravchyk K.V., Kovalenko M.V. Zeolite–templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano, 2017, 11(2): 1911.

[18]

Nueangnoraj K., Nishihara H., Ishii T., Yamamoto N., Itoi H., Berenguer R., Ruiz–Rosas R., Cazorla–Amorós D., Morallón E., Ito M., Kyotani T. Pseudocapacitance of zeolite–templated carbon in organic electrolytes. Energy Storage Mater., 2015, 1, 35.

[19]

Nishihara H., Itoi H., Kogure T., Hou P.X., Touhara H., Okino F., Kyotani T. Investigation of the ion storage/transfer behavior in an electrical double–layer capacitor by using ordered microporous carbons as model materials. Chem. Eur. J., 2009, 15(21): 5355.

[20]

Xu H., Gao Q.M., Guo H.L., Wang H.L. Hierarchical porous carbon obtained using the template of NaOH–treated zeolite β and its high performance as supercapacitor. Microporous Mesoporous Mater., 2010, 133(1–3): 106.

[21]

Huang X., Wang Q., Chen X.Y., Zhang Z.J. N–doped nanoporous carbons for the supercapacitor application by the template carbonization of glucose: the systematic comparison of different nitridation agents. J. Electroanal. Chem., 2015, 748, 23.

[22]

W.W. Gao, H. Huang, H.Y. Shi, X. Feng, and W.B. Song, Nitrogen–rich graphene from small molecules as high performance anode material, Nanotechnology, 25(2014), No. 41, art. No. 415402.

[23]

Cai J.J., Li L.J., Lv X.X., Yang C.P., Zhao X.B. Large surface area ordered porous carbons via nanocasting zeolite 10X and high performance for hydrogen storage application. ACS Appl. Mater. Interfaces, 2014, 6(1): 167.

[24]

Z.X. Ma, T. Kyotani, and A. Tomita, Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y, Carbon, 40 (2002), No. 13, p. 2367.

[25]

Wahid M., Parte G., Phase D., Ogale S. Yogurt: a novel precursor for heavily nitrogen doped supercapacitor carbon. J. Mater. Chem. A, 2015, 3(3): 1208.

[26]

Liu T.T., Liu E.H., Ding R., Luo Z.Y., Hu T.T., Li Z.P. Preparation and supercapacitive performance of clew–like porous nanocarbons derived from sucrose by catalytic graphitization. Electrochim. Acta, 2015, 173, 50.

[27]

Zhang S., Tian K., Cheng B.H., Jiang H. Preparation of N–doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes. ACS Sustainable Chem. Eng., 2017, 5(8): 6682.

[28]

Wei H.M., Chen H.J., Fu N., Chen J., Lan G.X., Qian W., Liu Y.P., Lin H.L., Han S. Excellent electrochemical properties and large CO2 capture of nitrogen–doped activated porous carbon synthesised from waste longan shells. Electrochim. Acta, 2017, 231, 403.

[29]

Nueangnoraj K., Nishihara H., Imai K., Itoi H., Ishii T., Kiguchi M., Sato Y., Terauchi M., Kyotani T. Formation of crosslinked–fullerene–like framework as negative replica of zeolite Y. Carbon, 2013, 62, 455.

[30]

B.J. Zhu, B. Liu, C. Qu, H. Zhang, W.H. Guo, Z.B. Liang, F. Chen, and R.Q. Zou, Tailoring biomass–derived carbon for high–performance supercapacitors from controllably cultivated algae microspheres, J. Mater. Chem. A, 6(2018), No. 4, No. p. 1523.

[31]

J.S. Moon, H. Kim, D.C. Lee, J.T. Lee, and G. Yushin, Increasing capacitance of zeolite–templated carbons in electric double layer capacitors, J. Electrochem. Soc., 162(2015), No. 5, p. A5070.

[32]

Huang W.T., Zhang H., Huang Y.Q., Wang W.K., Wei S.C. Hierarchical porous carbon obtained from animal bone and evaluation in electric double–layer capacitors. Carbon, 2011, 49(3): 838.

[33]

Tian Z.W., Xiang M., Zhou J.C., Hu L.Q., Cai J.J. Nitrogen and oxygen–doped hierarchical porous carbons from algae biomass: direct carbonization and excellent electrochemical properties. Electrochim. Acta, 2016, 211, 225.

[34]

Su F.B., Poh C.K., Chen J.S., Xu G.W., Wang D., Li Q., Lin J.Y., Lou X.W. Nitrogen–containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci., 2011, 4(3): 717.

[35]

Sun L., Wang C.L., Zhou Y., Zhao Q., Zhang X., Qiu J.S. Activated nitrogen–doped carbons from polyvinyl chloride for high–performance electrochemical capacitors. J. Solid State Electrochem., 2014, 18(1): 49.

[36]

Si W.J., Zhou J., Zhang S.M., Li S.J., Xing W., Zhuo S.P. Tunable N–doped or dual N, S–doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim. Acta, 2013, 107, 397.

[37]

Wu X.X., Tian Z.W., Hu L.Q., Huang S., Cai J.J. Macroalgae–derived nitrogen–doped hierarchical porous carbons with high performance for H2 storage and supercapacitors. RSC Adv., 2017, 7(52): 32795.

[38]

Ren M., Jia Z.Y., Tian Z.W., López D., Cai J.J., Titirici M.M., Jorge A.B. High performance N–doped carbon electrodes obtained via hydrothermal carbonization of macroalgae for supercapacitor applications. ChemElectroChem, 2018, 5(18): 2686.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/