Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO−C composite anode
Azhar Iqbal , Long Chen , Yong Chen , Yu-xian Gao , Fang Chen , Dao-cong Li
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (12) : 1473 -1481.
Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO−C composite anode
A high-energy-density Li-ion battery with excellent rate capability and long cycle life was fabricated with a Ni-rich layered LiNi0.8Mn0.1Co0.1O2 cathode and SiO−C composite anode. The LiNi0.8Mn0.1Co0.1O2 and SiO−C exhibited excellent electrochemical performance in both half and full cells. Specifically, when integrated into a full cell configuration, a high energy density (280 Wh·kg−1) with excellent rate capability and long cycle life was attained. At 0.5C, the full cell retained 80% of its initial capacity after 200 charge/discharge cycles, and 60% after 600 cycles, indicating robust structural tolerance for the repeated insertion/extraction of Li+ ions. The rate performance showed that, at high rate of 1C and 2C, 96.8% and 93% of the initial capacity were retained, respectively. The results demonstrate strong potential for the development of high energy density Li-ion batteries for practical applications.
high energy density / full cell / rate performance / high capacity cathode
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
P.B. Wang, M.Z. Luo, J.C. Zheng, Z.J. He, H. Tong, and W.J. Yu, Comparative investigation of 0.5Li2MnO3.0.5LiNi0.5Co0.2Mn0.3O2 cathode materials synthesized by using different lithium sources, Front. Chem. 6(2018), p. 1. |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
/
| 〈 |
|
〉 |