Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO−C composite anode

Azhar Iqbal , Long Chen , Yong Chen , Yu-xian Gao , Fang Chen , Dao-cong Li

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (12) : 1473 -1481.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (12) : 1473 -1481. DOI: 10.1007/s12613-018-1702-8
Article

Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO−C composite anode

Author information +
History +
PDF

Abstract

A high-energy-density Li-ion battery with excellent rate capability and long cycle life was fabricated with a Ni-rich layered LiNi0.8Mn0.1Co0.1O2 cathode and SiO−C composite anode. The LiNi0.8Mn0.1Co0.1O2 and SiO−C exhibited excellent electrochemical performance in both half and full cells. Specifically, when integrated into a full cell configuration, a high energy density (280 Wh·kg−1) with excellent rate capability and long cycle life was attained. At 0.5C, the full cell retained 80% of its initial capacity after 200 charge/discharge cycles, and 60% after 600 cycles, indicating robust structural tolerance for the repeated insertion/extraction of Li+ ions. The rate performance showed that, at high rate of 1C and 2C, 96.8% and 93% of the initial capacity were retained, respectively. The results demonstrate strong potential for the development of high energy density Li-ion batteries for practical applications.

Keywords

high energy density / full cell / rate performance / high capacity cathode

Cite this article

Download citation ▾
Azhar Iqbal, Long Chen, Yong Chen, Yu-xian Gao, Fang Chen, Dao-cong Li. Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO−C composite anode. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(12): 1473-1481 DOI:10.1007/s12613-018-1702-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ding Y., Mu D.B., Wu B.R., Wang R., Zhao Z.K., Wu F. Recent progresses on nickel–rich layered oxide positive electrode materials used in lithium–ion batteries for electric vehicles. Appl. Energy, 2017, 195, 586.

[2]

Wang K., Wei Y.M., Zhang X. Energy and emissions efficiency patterns of Chinese regions: A multi–directional efficiency analysis. Appl. Energy, 2013, 104, 105.

[3]

Zhang Y.Z., Xiong R., He H.W., Shen W.X. A lithium–ion battery pack state of charge and state of energy estimation algorithms using a hardware–in–the–loop validation. IEEE Trans. Power Electron., 2017, 32(6): 4421.

[4]

Yang Zhenguo, Zhang Jianlu, Kintner-Meyer Michael C. W., Lu Xiaochuan, Choi Daiwon, Lemmon John P., Liu Jun. Electrochemical Energy Storage for Green Grid. Chemical Reviews, 2011, 111(5): 3577 3613.

[5]

Sun F.C., Xiong R., He H.W. A systematic state–of–charge estimation framework for multi–cell battery pack in electric vehicles using bias correction technique. Appl. Energy, 2016, 162, 1399.

[6]

Lee J.H., Yoon C.S., Hwang J.Y., Kim S.J., Maglia F., Lamp P., Myung S.T., Sun Y.K. High–energy–density lithium–ion battery using carbon–nanotube–si composite anode and compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ. Sci., 2016, 9(6): 2152.

[7]

Sun Z.H., Wang D.D., Fan Y.Y., Jiao L.S., Li F.H., Wu T.S., Han D.X., Niu L. Improved performances of Li–Ni0.6Co0.15Mn0.25O2 cathode material with full concentration–gradient for lithium ion batteries. RSC Adv., 2016, 6(105): 103747.

[8]

Zheng Jun-chao, Yang Bi-yuan, Wang Xiao-wei, Zhang Bao, Tong Hui, Yu Wan-jing, Zhang Jia-feng. Comparative Investigation of Na2FeP2O7 Sodium Insertion Material Synthesized by Using Different Sodium Sources. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4966 4972.

[9]

Zhou C.X., Wang P.B., Zheng J.C., Xia C.Y., Zhang B., Xi X.M., Xiao K.S., Liao D.Q., Yang L.S., Chen X.Q., Qin S.B. Cyclic performance of Li–rich layered material Li1.1Ni0.35Mn0.65O2 synthesized through a two–step calcination method. Electrochem. Acta, 2017, 252, 286.

[10]

P.B. Wang, M.Z. Luo, J.C. Zheng, Z.J. He, H. Tong, and W.J. Yu, Comparative investigation of 0.5Li2MnO3.0.5LiNi0.5Co0.2Mn0.3O2 cathode materials synthesized by using different lithium sources, Front. Chem. 6(2018), p. 1.

[11]

Marinaro M., Yoon D.H., Gabrielli G., Stegmaier P., Figgemeier E., Spurk P.C., Nelis D., Schmidt G., Chauveau J., Axmann P., Mehrens M.W. High performance 1.2 Ah Si–alloy/GraphiteLiNi0.5Mn0.3Co0.2O2 prototype Li–ion battery. J. Power Sources, 2017, 357, 188.

[12]

Myung S.T., Maglia F., Park K.J., Yoon C.S., Lamp P., Kim S.J., Sun Y.K. Nickel–rich layered cathode materials for automotive lithium–ion batteries. ACS Energy Lett., 2016, 2(1): 196.

[13]

Schipper F., Dixit M., Kovacheva D., Talianker M., Haik O., Grinblat J., Erickson E.M., Ghanty C., Major D.T., Markovsky B., Aurbach D. Stabilizing nickel–rich layered cathode materials by a high–charge cation doping strategy: Zirconium–doped LiNi0.6Co0.2Mn0.2O2. J. Mater. Chem. A, 2016, 4(41): 16073.

[14]

Goriparti S., Miele E., De Angelis F., Di Fabrizio E., Zaccaria R.P., Capiglia C. Review on recent progress of nanostructured anode materials for Li–ion batteries. J. Power Sources, 2014, 257, 421.

[15]

Liu N., Wu H., McDowell M.T., Yao Y., Wang C., Cui Y. A yolk–shell design for stabilized and scalable Li–ion battery alloy anodes. Nano Lett., 2012, 12(6): 3315.

[16]

Kim J.H., Sohn H.J., Kim H., Jeong G., Choi W. Enhanced cycle performance of SiO−C composite anode for lithium–ion batteries. J. Power Sources, 2007, 170(2): 456.

[17]

Zhang J.Y., Zhang C.Q., Liu Z., Zheng J., Zuo Y.H., Xue C.L., Li C.B., Cheng B.W. High–performance ball–milled SiOx anodes for lithium ion batteries. J. Power Sources, 2017, 339, 86.

[18]

Kim H.R., Woo S.G., Kim J.H., Cho W., Kim Y.J. Capacity fading behavior of Ni–rich layered cathode materials in Li–ion full cells. J. Electroanal. Chem., 2016, 782, 168.

[19]

Ohzuku T., Ueda A., Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium batteries. J. Electrochem. Soc., 1993, 140(7): 1862.

[20]

Li W., Reimers J.N., Dahn J.R. In situ x–ray diffraction and electrochemical studies of Li1−xNiO2. Solid State Ionics, 1993, 67(1–2): 123.

[21]

Arai H., Okada S., Ohtsuka H., Ichimura M., Yamaki J. Characterization and cathode performance of Li1−xNi1+xO2 prepared with the excess lithium method. Solid State Ionics, 1995, 80(3–4): 261.

[22]

Yang Jun, Xia Yongyao. Enhancement on the Cycling Stability of the Layered Ni-Rich Oxide Cathode by In-Situ Fabricating Nano-Thickness Cation-Mixing Layers. Journal of The Electrochemical Society, 2016, 163(13): A2665 A2672.

[23]

Yang J., Xia Y.Y. Suppressing the phase transition of the layered Ni–rich oxide cathode during high–voltage cycling by introducing low–content Li2MnO3. ACS Appl. Mater. Interfaces, 2016, 8(2): 1297.

[24]

Yang J., Hou M.Y., Haller S., Wang Y.G., Wang C.X., Xia Y.Y. Improving the cycling performance of the layered Ni–rich oxide cathode by introducing low–content Li2MnO3. Electrochim. Acta, 2016, 189, 101.

[25]

Park J., Kim G.P., Nam I., Park S., Yi J. One–pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium–ion batteries. Nanotechnology, 2013, 24(2): 025602.

[26]

Hu Y.S., Demir–Cakan R., Titirici M.M., Schlögl J.O. R., Antonietti M., Maier J. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium–ion batteries. Angew. Chem. Int. Ed., 2008, 47(9): 1645.

[27]

Yang H.F., Yan Y., Liu Y., Zhang F.Q., Zhang R.Y., Meng Y., Li M., Xie S.H., Tu B., Zhao D.Y. A simple melt impregnation method to synthesize ordered mesoporous carbon and carbon nanofiber bundles with graphitized structure from pitches. J. Phys. Chem. B, 2004, 108(45): 17320.

[28]

Park Cheol-Min, Choi Woongchul, Hwa Yoon, Kim Jae-Hun, Jeong Goojin, Sohn Hun-Joon. Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. Journal of Materials Chemistry, 2010, 20(23): 4854.

[29]

Mamiya M., Takei H., Kikuchi M., Uyeda C. Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction. J. Cryst. Growth, 2001, 229(1–4): 457.

[30]

Choi I., Lee M.J., Oh S.M., Kim J.J. Fading mechanisms of carbon–coated and disproportionate Si/SiOx negative electrode (Si/SiOx/C) in Li–ion secondary batteries: Dynamics and component analysis by TEM. Electrochem. Acta, 2012, 85, 369.

[31]

Maranchi J. P., Hepp A. F., Evans A. G., Nuhfer N. T., Kumta P. N. Interfacial Properties of the a-Si∕Cu:Active–Inactive Thin-Film Anode System for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2006, 153(6): A1246.

[32]

Konarov A., Myung S.T., Sun Y.K. Cathode materials for future electric vehicles and energy storage systems. ACS Energy Lett., 2017, 2(3): 703.

[33]

Eom K., Joshi T., Bordes A., Do I., Fuller T.F. The design of a Li–ion full cell battery using a nano silicaon and nano multi–layer graphene composite anode. J. Power Sources, 2014, 249, 118.

[34]

Trask Stephen E., Pupek Krzysztof Z., Gilbert James A., Klett Matilda, Polzin Bryant J., Jansen Andrew N., Abraham Daniel P. Performance of Full Cells Containing Carbonate-Based LiFSI Electrolytes and Silicon-Graphite Negative Electrodes. Journal of The Electrochemical Society, 2015, 163(3): A345 A350.

[35]

Zhou P.F., Meng H.J., Zhang Z., Chen C.C., Lu Y.Y., Cao J., Cheng F.Y., Chen J. Stable layered Ni–rich Li–Ni0.9Co0.07Al0.03O2 microspheres assembled with nanoparticles as high–performance cathode materials for lithium–ion batteries. J. Mater. Chem. A, 2017, 5(6): 2724.

[36]

Jiao L.S., Liu Z.B., Sun Z.H., Wu T.S., Gao Y.Z., Li H.Y., Li F.H., Niu L. An advanced lithium ion battery based on a high quality graphitic graphene anode and a Li[Ni0.6Co0.2Mn0.2]O2 cathode. Electrochem. Acta, 2018, 259, 48.

[37]

Zheng J.M., Yan P.F., Cao R.G., Xiang H.F., Engelhard M.H., Polzin B.J., Wang C.M., Zhang J.G., Xu W. Effects of propylene carbonate content in CsPF6–containing electrolytes on the enhanced performances of graphite electrode for lithium–ion batteries. ACS Appl. Mater. Interfaces, 2016, 8(8): 5715.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/