Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition

Labani Mustafi , M. M. Rahman , Mohammad Nur E. Alam Al Nasim , Mohammad Asaduzzaman Chowdhury , M. H. Monir

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (11) : 1335 -1343.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (11) : 1335 -1343. DOI: 10.1007/s12613-018-1687-3
Article

Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition

Author information +
History +
PDF

Abstract

A systematic investigation was carried out to observe the deposition rate of a diamond-like carbon (DLC) coating on two stainless steel substrates by chemical vapor deposition (CVD). The objective of this research is to study the deposition behavior of the DLC coating and its tribological properties in different combinations of methane (CH4) and nitrogen, which were used as precursor gases. The results reveal that the deposition rate increases with increasing CH4 content up to 50vol%. The hardness of the DLC-deposited layer also increases while the friction coefficient decreases with increasing CH4 gas content up to 50% in the precursor gas mixture.

Keywords

diamond-like carbon / chemical vapor deposition / methane and nitrogen gas mixtures / deposition rate / hardness / friction coefficient

Cite this article

Download citation ▾
Labani Mustafi, M. M. Rahman, Mohammad Nur E. Alam Al Nasim, Mohammad Asaduzzaman Chowdhury, M. H. Monir. Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(11): 1335-1343 DOI:10.1007/s12613-018-1687-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Choy K. L. Chemical vapour deposition of coatings. Prog. Mater. Sci., 2003, 48(2): 57.

[2]

Lai L. H., Chiou S. E., Hsueh H. C., Shiue S. T. Effects of propane/nitrogen mixtures on thermal chemical vapor deposition rates and microstructures of carbon films. ECS J. Solid State Sci. Technol., 2013, 2(11): M44.

[3]

Lee R. H., Lai L. H., Shiue S. T. Effects of different acetylene/ nitrogen ratios on characteristics of carbon coatings on optical fibers prepared by thermal chemical vapor deposition. Thin Solid Films, 2010, 518(24): 7267.

[4]

Angus J. C. Diamond synthesis by chemical vapor deposition: The early years. Diamond Relat. Mater., 2014, 49, 77.

[5]

Ralchenko V., Sychov I., Vlasov I., Vlasov A., Konov V., Khomich A. V., Voronina S. Quality of diamond wafers grown by microwave plasma CVD: Effects of gas flow rate. Diamond Relat. Mater., 1999, 8(2): 189.

[6]

Sussmann R. S., Scarsbrook G. A., Wort C. J. H., Wood R. M. Laser damage testing of CVD-grown diamond windows. Diamond Relat. Mater., 1994, 3(9): 1173.

[7]

Koidl P., Klages C. P. Optical applications of polycrystalline diamond. Diamond Relat. Mater., 1992, 1(10–11): 1065.

[8]

Tzeng Y., Yoshikawa M., Murakawa M., Feldman A. Applications of Diamond Films and Related Materials, 1991

[9]

Pang L. Y. S., Chan S. S. M., Johnston C., Chalker P. R., Jackman R. B. High temperature polycrystalline diamond metal-insulator-semiconductor field-effect-transistor. Diamond Relat. Mater., 1997, 6(2–4): 333.

[10]

T. Ando, T. Aizawa, M. Kamo, Y. Sato, T. Anzai, H. Yamomoto, A. Wada, K. Domen, and C. Hirose, Advances in New Diamond Science and Technology, S. Saito, N. Fujirnory, O. Fukunaga, M. Kamo, K. Kobashi, and M. Yoshikawa, eds., MYU, Tokyo, 1994, 461.

[11]

Shi J., Gong Z. B., Wang Y. F., Gao K. X., Zhang J. Y. Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films: Relative humidity dependent character. Appl. Surf. Sci., 2017, 422, 147.

[12]

Gicquel A., Hassouni K., Silva F., Achard J. CVD diamond films: from growth to applications. Curr. Appl. Phys., 2001, 1(6): 479.

[13]

Zeng C., Chen Q. Y., Xu M., Deng S. H., Luo Y., Wu T. Enhancement of mechanical, tribological and morphological properties of nitrogenated diamond-like carbon films by gradient nitrogen doping. Diamond Relat. Mater., 2017, 76, 132.

[14]

Kruehong S., Kruehong C., Artnaseaw A. Branched carbon fibres and other carbon nanomaterials grown directly from 304 stainless steel using a chemical vapour deposition process. Diamond Relat. Mater., 2016, 64, 143.

[15]

Saketi S., Olsson M. Influence of CVD and PVD coating micro topography on the initial material transfer of 316L stainless steel in sliding contacts–A laboratory study. Wear, 2017, 388–389, 29.

[16]

Wu S. J., Kousaka H., Kar S., Li D., Su J. H. Friction and wear performance of bearing ball sliding against diamond- like carbon coatings. Mater. Res. Express, 2017, 4(1): 015602.

[17]

Niiyama Y., Shimizu N., Kuwayama A., Okada H., Takeno T., Kurihara K., Adachi K. Effect of running-in for delamination and friction properties of self-mating diamond- like carbon coatings in water. Wear, 2017, 378–379, 27.

[18]

Dalibón E. L., Escalada L., Simison S., Forsich C., Heim D., Brühl S. P. Mechanical and corrosion behavior of thick and soft DLC coatings. Surf. Coat. Technol., 2017, 312, 101.

[19]

Zia A. W., Zhou Z. F., Li L. K. Y. A preliminary wear studies of isolated carbon particles embedded diamond-like carbon coatings. Tribol. Int., 2017, 114, 42.

[20]

Gardos M. N. Spear K. E., Dismukes J. P. Tribology and wear behavior of diamond. Synthetic Diamond: Emerging CVD Science and Technology, 1994, New York, John Wiley & Sons, Inc. 419.

[21]

Grill A. Review of the tribology of diamond-like carbon. Wear, 1993, 168(1–2): 143.

[22]

Rahman M. M., Talukdar S., Chowdhury M. A., Khan R., Masum A. A., Islam N. Effects of Acetylene on deposition rate of stainless steels using thermal chemical vapor deposition. Int. J. Eng. Res. Afr., 2016, 23, 7.

[23]

Rahman M. M., Chowdhury M. A., Nuruzzaman D. M., Debnath U. K., Kowser M. A., Roy B. K. Deposition rates on stainless steel substrates of different surface roughnesses under different operating conditions using thermal CVD. Int. J. Surf. Sci. Eng., 2016, 10(3): 282.

[24]

Rodriguez N. M. A review of catalytically grown carbon nanofibers. J. Mater. Res., 1993, 8(12): 3233.

[25]

Kong J., Cassell A. M., Dai H. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., 1998, 292(4–6): 567.

[26]

Manhabosco T. M., Müller I. L. Tribocorrosion of diamond-like carbon deposited on Ti6Al4V. Tribol. Lett., 2009, 33(3): 193.

[27]

Mallik A. K., Dandapat N., Ghosh P., Ganguly U., Jana S., Das S., Guha K., Rebello G., Lahiri S. K., Datta S. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials. Bull. Mater. Sci., 2013, 36(2): 193.

[28]

Panda M., Mangamma G., Krishnan R., Madapu K. K., Krishna D. N. G., Dash S., Tyagi A. Nano scale investigation of particulate contribution to diamond like carbon film by pulsed laser deposition. RSC Adv., 2016, 6(8): 6016.

[29]

Dillon R. O., Woollam J. A., Katkanant V. Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys. Rev. B, 1984, 29(6): 3482.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/