Structural and electrical properties of HCl–polyaniline–Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder

You Zhou , Yu-he Zhang , Jun-sheng Ma , Ming-peng Yu , Hong Qiu

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (11) : 1329 -1334.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (11) : 1329 -1334. DOI: 10.1007/s12613-018-1686-4
Article

Structural and electrical properties of HCl–polyaniline–Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder

Author information +
History +
PDF

Abstract

Ag nanoparticles were sputter-deposited on ammonium persulfate ((NH4)2S2O8) powder to obtain (NH4)2S2O8−Ag powder, which was used to synthesize the HCl-doped polyaniline−Ag (HCl−PANI−Ag) composite via a polymerization procedure. The Ag nanoparticles were dispersed in the HCl−PANI matrix, and their sizes mainly ranged from 3 to 6 nm. The Ag nanoparticles did not affect the structure of emeraldine salt in the composite, and they increased the ordered crystalline regions in the HCl−PANI matrix. The HCl−PANI−Ag composite had a conductivity of (6.8 ± 0.1) S/cm, which is about four times larger than that of the HCl−PANI. The charge transport mechanism in the composite is explained by the three-dimensional Mott variable-range hopping (3D-Mott-VRH).

Keywords

hydrochloric-acid-doped polyaniline / silver nanoparticles / composite / structure / conductivity

Cite this article

Download citation ▾
You Zhou, Yu-he Zhang, Jun-sheng Ma, Ming-peng Yu, Hong Qiu. Structural and electrical properties of HCl–polyaniline–Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(11): 1329-1334 DOI:10.1007/s12613-018-1686-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Khanna P. K., Singh N., Charan S., Viswanath A. K. Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Mater. Chem. Phys., 2005, 92(1): 214.

[2]

Kang Y. O., Choi S. H., Gopalan A., Lee K. P., Kang H. D., Song Y. S. Tuning of morphology of Ag nanoparticles in the Ag/polyaniline nanocomposites prepared by γ-ray irradiation. J. Non-Cryst. Solids, 2006, 352(5): 463.

[3]

Oliveira M. M., Castro E. G., Canestraro C. D., Zanchet D., Ugarte D., Roman L. S., Zarbin A. J. G. A simple two-phase route to silver nanoparticles/polyaniline structures. J. Phys. Chem. B, 2006, 110(34): 17063.

[4]

Jing S. Y., Xing S. X., Yu L. X., Wu Y., Zhao C. Synthesis and characterization of Ag/polyaniline core-shell nanocomposites based on silver nanoparticles colloid. Mater. Lett., 2007, 61(13): 2794.

[5]

Lee Y. H., Park J. H., Jun Y. D., Kim D. W., Lee J. J., Kim Y. C., Oh S. G. 3-Mercapto-1,2-propanediol-substituted polyaniline/Ag nanocomposites prepared by concurrent reduction and substitution chemistry. Synth. Met., 2008, 158(3–4): 143.

[6]

Bouazza S., Alonzo V., Hauchard D. Synthesis and characterization of Ag nanoparticles-polyaniline composite powder material. Synth. Met., 2009, 159(15–16): 1612.

[7]

Blinova N. V., Stejskal J., Trchová M., Sapurina I., Ćirić-Marjanović G. The oxidation of aniline with silver nitrate to polyaniline-silver composites. Polymer, 2009, 50(1): 50.

[8]

Stejskal J., Trchová M., Kovářová J., Brožová L., Prokeš J. The reduction of silver nitrate with various polyaniline salts to polyaniline-silver composites. React. Funct. Polym., 2009, 69(2): 86.

[9]

Bober P., Trchová M., Prokeš J., Varga M., Stejskal J. Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids. Electrochim. Acta, 2011, 56(10): 3580.

[10]

Bober P., Stejskal J., Trchová M., Prokeš J. Polyaniline- silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: The control of silver content. Polymer, 2011, 52(26): 5947.

[11]

Bober P., Stejskal J., Trchová M., Prokeš J. In-situ prepared polyaniline-silver composites: Single- and two-step strategies. Electrochim. Acta, 2014, 122, 259.

[12]

Bober P., Humpoliček P., Syrový T., Capákova Z., Syrová L., Hromádková J., Stejskal J. Biological properties of printable polyaniline and polyaniline-silver colloidal dispersions stabilized by gelatin. Synth. Met., 2017, 232, 52.

[13]

Roussel F., King R. C. Y., Kuriakose M., Depriester M., Hadj-Sahraoui A., Gors C., Addad A., Brun J. F. Electrical and thermal transport properties of polyaniline/silver composites and their use as thermoelectric materials. Synth. Met., 2015, 199, 196.

[14]

Huang S. M., Xu J. Q., Tao X., Chen X., Zhu F., Wang Y., Jiang R. F., Ouyang G. F. Fabrication of polyaniline/silver composite coating as a dual-functional platform for microextraction and matrix-free laser desorption/ionization. Talanta, 2017, 172, 155.

[15]

Liu R. C., Qiu H., Li H., Zong H., Fang C. Y. Fabrication and characteristics of composite containing HCl-doped polyaniline and Ni nanoparticles. Synth. Met., 2010, 160(23–24): 2404.

[16]

Liu R. C., Qiu H., Zong H., Fang C. Y. Fabrication and characterization of composite containing HCl-doped polyaniline and Fe nanoparticles. J. Nanomater., 2012, 2012, 674104.

[17]

Huang Y., Qiu H., Qian H., Wang F. P., Pan L. Q., Wu P., Tian Y., Huang X. L. Effect of annealing on the characteristics of Au/Ni80Fe20 and Au/Ni30Fe70 bilayer films grown on glass. Thin Solid Films, 2005, 472(1–2): 302.

[18]

Wu P., Qiu H., Zhao Y. Q., Jiang D. H., Zhang B., Zhao X. D., Huang X. L., Pan L. Q., Tian Y. Characteristics of resistivity and structure of silver films deposited in low vacuum. Phys. Exp., 2007, 27(3): 3.

[19]

Adams P. N., Laughlin P. J., Monkman A. P., Kenwright A. M. Low temperature synthesis of high molecular weight polyaniline. Polymer, 1996, 37(15): 3411.

[20]

Jozefowicz M. E., Laversanne R., Javadi H. H. S., Epstein A. J., Pouget J. P., Tang X., MacDiarmid A. G. Multiple lattice phases and polaron-lattice-spinless-defect competition in polyaniline. Phys. Rev. B, 1989, 39(17): 12958.

[21]

Pouget J. P., Jozefowicz M. E., Epstein A. J., Tang X., MacDiarmid A. G. X-ray structure of polyaniline. Macromolecules, 1991, 24(3): 779.

[22]

Nath C., Kumar A. Fractal like charge transport in polyaniline nanostructures. Phys. B, 2013, 426, 94.

[23]

Asturias G. E., MacDiarmid A. G., McCall R. P., Epstein A. J. The oxidation state of “emeraldine” base. Synth. Met., 1989, 29(1): 157.

[24]

Tang J. S., Jin X. B., Wang B. C., Wang F. S. Infrared spectra of soluble polyaniline. Synth. Met., 1988, 24(3): 231.

[25]

Castillo-Castro T. D., Larios-Rodriguez E., Molina-Arenas Z., Castillo-Ortega M. M., Tanori J. Synthesis and characterization of metallic nanoparticles and their incorporation into electroconductive polymer composites. Compos. Part A, 2007, 38(1): 107.

[26]

Gupta K., Jana P. C., Meikap A. K. Optical and electrical transport properties of polyaniline-silver nanocomposite. Synth. Met., 2010, 160(13–14): 1566.

[27]

Gu H. B., Guo J., Yan X. R., Wei H. G., Zhang X., Liu J. R., Huang Y. D., Wei S. Y., Guo Z. H. Electrical transport and magnetoresistance in advanced polyaniline nanostructures and nanocomposites. Polymer, 2014, 55(17): 4405.

[28]

Ghosh M., Barman A., Meikap A. K., De S. K., Chatterjee S. Hopping transport in HCl doped conducting polyaniline. Phys. Lett. A, 1999, 260(1–2): 138.

[29]

AIP Adv., 2011, 1(2)

[30]

Kumar S. A., Singh A. P., Saini P., Khatoon F., Dhawan S. K. Synthesis, charge transport studies, and microwave shielding behavior of nanocomposites of polyaniline with Ti-doped γ-Fe2O3. J. Mater. Sci., 2012, 47(5): 2461.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/