Effect of the synthesis route on the structural and dielectric properties of SrBi1.8Y0.2Nb2O9 ceramics

Mohamed Afqir , Amina Tachafine , Didier Fasquelle , Mohamed Elaatmani , Jean-Claude Carru , Abdelouahad Zegzouti , Mustapha El Hammioui

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (11) : 1304 -1312.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (11) : 1304 -1312. DOI: 10.1007/s12613-018-1683-7
Article

Effect of the synthesis route on the structural and dielectric properties of SrBi1.8Y0.2Nb2O9 ceramics

Author information +
History +
PDF

Abstract

This work is devoted to the synthesis and characterization of yttrium-doped SrBi2Nb2O9 ceramics prepared by three methods: solid state reaction, co-precipitation, and hydrothermal. Multiple characterizations, specifically scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR), were used to validate the structural feature. The crystallite size was estimated by Scherrer’s formula and the Williamson–Hall plot. The effect of the process on the band intensities of the FTIR spectra was investigated. The crystallite size and microstructure of ceramics prepared from different synthesis processes were strongly influenced by the sinterability. SEM images revealed nanograin ceramics for materials prepared by co-precipitation and hydrothermal methods and micrograin ceramics prepared by the solid state method. The synthesized compounds underwent phase transitions at 480–465°C. The dielectric and electrical properties of these Y-doped SrBi2Nb2O9 ceramics appear to be dependent on the grain size.

Keywords

Aurivillius, synthesis routes / crystallite size / microstructure / dielectric

Cite this article

Download citation ▾
Mohamed Afqir, Amina Tachafine, Didier Fasquelle, Mohamed Elaatmani, Jean-Claude Carru, Abdelouahad Zegzouti, Mustapha El Hammioui. Effect of the synthesis route on the structural and dielectric properties of SrBi1.8Y0.2Nb2O9 ceramics. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(11): 1304-1312 DOI:10.1007/s12613-018-1683-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Isupov V. A. Two types of ABi2B2O9 layered perovskite-like ferroelectrics. Inorg. Mater., 2007, 43(9): 976.

[2]

Wei T., Zhao C. Z., Li C. P., Zhan L. Q., Jin Q., Yang X. F. Enhanced ferroelectric and photoluminescence properties in Sr1–1.5xHo xBi2Nb2O9 ceramics. Mater. Res. Bull., 2013, 48(10): 4314.

[3]

Xue J. M., Sim M. H., Ezhilvalavan S., Zhou Z. H., Wang J., Zhu H., Miao J. M. Ferroelectric and dielectric properties of 0.6SrBi2Nb2O9–0.4BiFeO3 thin films. Thin Solid Films., 2004, 460(1–2): 1.

[4]

Jain S., Jha A. K. Structural and electrical properties of SrBi2V xNb2–xO9 ferroelectric ceramics: Effect of temperature and frequency. J. Electroceram., 2010, 24(1): 58.

[5]

Choi H. S., Lim G.-S., Lee J. H., Jang Y. M., Yoo D. C., Lee J. Y., Choi I. Growth and characterization of Al2O3 thin films for the buffer insulator in Pt/SrBi2Nb2O9/Al2O3/Si ferroelectric gate oxide structure. Met. Mater. Int., 2003, 9(2): 293.

[6]

Asai T., Camargo E. R., Kakihana M., Osada M. Novel aqueous solution route to the low-temperature synthesis of SrBi2Nb2O9 by use of water-soluble Bi and Nb complexes. J. Alloys Compd., 2000, 309(1–2): 113.

[7]

Dhak D., Biswas S. K., Pramanik P. Synthesis and characterization of nanocrystalline SrBi2Nb2O9 ferroelectric ceramics using TEA as the polymeric matrix. J. Eur. Ceram. Soc., 2006, 26(16): 3717.

[8]

Gaikwad S. P., Dhage S. R., Potdar H. S., Samuel V., Ravi V. Co-precipitation method for the preparation of nanocrystalline ferroelectric SrBi2Nb2O9 Ceramics. J. Electroceram., 2005, 14(1): 83.

[9]

Xie H., Wang K., Jiang Y., Zhao Y., Wang X. Hydrothermal synthesis and characterization of SrBi2Nb2O9 Nanoplates. Synth. React. Inorg. Met. Org. Nano Met. Chem., 2015, 45(1): 80.

[10]

Muller C., Jacob F., Gagou Y., Elkaim E. Cationic disorder, microstructure and dielectric response of ferroelectric SBT ceramics. J. Appl. Crystallogr., 2003, 36(3): 880.

[11]

Naceur H., Megriche A., El Maaoui M. Hydrothermal synthesis and dielectric properties of ferroelectric SrBi2Nb2O9 ceramics. Eur. Chem. Bull., 2013, 2(2): 59.

[12]

Naceur H., Megriche A., El Maaoui M. Structural distortion and dielectric properties of Sr1–x(Na0.5Bi0.5) xBi2Nb2O9 (x = 0. 0, 0. 2, 0. 5, 0. 8 and 1. 0). J. Alloys Compd., 2013, 546, 145.

[13]

Naceur H., Megriche A., Maaoui M. E. Effect of sintering temperature on microstructure and electrical properties of Sr1–x(Na0.5Bi0.5) xBi2Nb2O9 solid solutions. J. Adv. Ceram., 2014, 3(1): 17.

[14]

Moure A., Pardo L. Ferroelectricity in aurivillius-type structure ceramics with n = 2 and (SrBi2Nb2O9)0.35(Bi3TiNbO9)0.65 composition. J. Electroceram., 2005, 15(3): 243.

[15]

Zou H., Yu Y., Li J., Cao Q. F., Wang X. S., Hou J. W. Photoluminescence, enhanced ferroelectric, and dielectric properties of Pr3+-doped SrBi2Nb2O9 multifunctional ceramics. Mater. Res. Bull., 2015, 69, 112.

[16]

Pardo L., Castro A., Millan P., Alemany C., Jiménez R., Jiménez B. (Bi3TiNbO9) x(SrBi2Nb2O9)1–x aurivillius type structure piezoelectric ceramics obtained from mechanochemically activated oxides. Acta Mater., 2000, 48(2): 2421.

[17]

Afqir M., Tachafine A., Fasquelle D., Elaatmani M., Carru J. C., Zegzouti A., Daoud M. Dielectric properties of SrBi1.8RE0.2Nb2O9 (RE = Yb, Tm, Tb, Gd, Er, Sm and Ce) ceramics. Solid State Sci., 2017, 73, 51.

[18]

Lamcharfi T., Sayouri S., Echatoui N. S., Outzourhit A., Hajji L. Dielectric and relaxation studies in hydrothermal processed PLZT ceramics. M. J. Condensed Matter, 2005, 6(1): 76.

[19]

Peng Z., Yan D., Chen Q., Xin D., Liu D., Xiao D., Zhu J. Crystal structure, dielectric and piezoelectric properties of Ta/W codoped Bi3TiNbO9 Aurivillius phase ceramics. Curr. Appl. Phys., 2014, 14(12): 1861.

[20]

Maniammal K., Madhu G., Biju V. X-ray diffraction line profile analysis of nanostructured nickel oxide: Shape factor and convolution of crystallite size and microstrain contributions. Physica E, 2017, 85, 214.

[21]

Qi W. H., Wang M. P. Size and shape dependent lattice parameters of metallic nanoparticles. J. Nanopart. Res., 2005, 7(1): 51.

[22]

Kezrane M., Guittoum A., Hemmous M., Lamrani S., Bourzami A., Weber W. Elaboration, microstructure, and magnetic properties of nanocrystalline Fe90Ni10 powders. J. Supercond. Novel Magn., 2015, 28(8): 2473.

[23]

Rane G. K., Welzel U., Mekaa S. R., Mittemeijer E. J. Non-monotonic lattice parameter variation with crystallite size in nanocrystalline solids. Acta Mater., 2013, 61(12): 4524.

[24]

Sui M. L., Lu K. Variation in lattice parameters with grain size of a nanophase Ni3P compound. Mater. Sci. Eng. A, 1994, 179–180, 541.

[25]

Zhang J. M., Zhang Y., Xu K. W., Ji V. Young’s modulus surface and Poisson’s ratio curve for orthorhombic crystals. J. Phys. Chem. Solids, 2007, 68(4): 503.

[26]

Li Y. L., Chen L. Q., Asayama G., Schlom D. G., Zurbuchen M., Streiffer S. K. Ferroelectric domain structures in SrBi2Nb2O9 epitaxial thin films: electron microscopy and phase-field simulations. J. Appl. Phys., 2004, 95(11): 6332.

[27]

Li Y. X., Chen G., Zhang H. J., Li Z. H., Sun J. X. Electronic structure and photocatalytic properties of ABi2Ta2O9 (A = Ca, Sr, Ba). J. Solid State Chem., 2008, 181(10): 2653.

[28]

Zhu M., Sun L., Li W. W., Yu W. L., Li Y. W., Hu Z. G., Chu J. H. Lattice vibrations and dielectric functions of ferroelectric SrBi2–xNd xNb2O9 bismuth layer-structured ceramics determined by infrared reflectance spectra. Mater. Res. Bull., 2010, 45(11): 1654.

[29]

Afqir M., Tachafine A., Fasquelle D., Elaatmani M., Carru J., Zegzouti A., Daoud M. Structure and electric properties of cerium substituted SrBi1.8Ce0.2Nb2O9 and SrBi1.8Ce0.2Ta2O9 ceramics. Process. Appl. Ceram., 2016, 10(3): 183.

[30]

Verma M., Tanwar A., Sreenivas K., Gupta V. Dielectric and ferroelectric properties of SrBi2Nb2O9 and SrBi1.9La0.1Nb2O9 ceramics. Ferroelectrics, 2010, 404(1): 233.

[31]

van der Meer F. Analysis of spectral absorption features in hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf., 2004, 5(1): 55.

[32]

Zaini N., van der Meer F., van der Werff H. Effect of grain size and mineral mixing on carbonate absorption features in the SWIR and TIR wavelength regions. Remote Sens., 2012, 4(4): 987.

[33]

Hopkin J. W., Seshadri K. S., Jonathan N. B. W., Hopkins J. W. A statistical approach to the analysis of infrared band profiles. Can. J. Chem., 1963, 41(3): 750.

[34]

Venkataraman B. H., Varma K. B. R. Grain orientation and anisotropy in the physical properties of SrBi2(Nb1−xVx)2O9 (0≤x≤0. 3) ceramics. J. Mater. Sci., 2003, 38(24): 4895.

[35]

Dhak D., Dhak P., Pramanik P. Influence of substitution on dielectric and impedance spectroscopy of Sr1−xBi2+yNb2O9 ferroelectric ceramics synthesized by chemical route. Appl. Surf. Sci., 2008, 254(10): 3078.

[36]

Hoshina T., Takizawa K., Li J. Y., Kasama T., Kakemoto H., Tsurumi T. Domain size effect on dielectric properties of barium titanate ceramics. Jpn. J. Appl. Phys., 2008, 47(9): 7607.

[37]

Yang C. C., Jiang Q. Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals. Acta Mater., 2005, 53(11): 3305.

[38]

Delavari H., Hosseini H. M., Simchi A. A simple model for the size and shape dependent Curie temperature of freestanding Ni and Fe nanoparticles based on the average coordination number and atomic cohesive energy. Chem. Phys., 2011, 383(1–3): 1.

[39]

Prasad K. V. R., Raju A. R., Varma K. B. R. Grain size effects on the dielectric properties of ferroelectric Bi2VO5.5 ceramics. J. Mater., 1994, 29(10): 2691.

[40]

Straumal B. B., Protasova S. G., Mazilkin A. A., Goering E., Schütz G., Straumal P. B., Baretzky B. Ferromagnetic behaviour of ZnO: The role of grain boundaries. Beilstein J. Nanotechnol., 2016, 7, 1936.

[41]

Straumal B. B., Mazilkin A. A., Protasova S. G., Stakhanova S. V., Straumal B., Bulatov M. F., Schütz G., Tietze T., Goering E., Baretzky B. Grain boundaries as a source of ferromagnetism and increased solubility of Ni in nanograined ZnO. Rev. Adv. Mater. Sci., 2015, 41(1): 61.

[42]

Liu G., Zhang S., Jiang W., Cao W. Losses in ferroelectric materials. Mater. Sci. Eng. R., 2015, 89, 1.

[43]

Papadakis E. P. Grain Size distribution in metals and its influence on ultrasonic attenuation measurements. J. Acoust. Soc. Am., 1961, 33(11): 1616.

[44]

Barbier T., Autret-Lambert C., Honstrette C., Gervais F., Lethiecq M. Dielectric properties of hexagonal perovskite ceramics prepared by different routes. Mater. Res. Bull., 2012, 47(12): 4427.

[45]

Van Dijk T., Burggraa A. J. Grain boundary effects on ionic conductivity in ceramic Gd xZr1–xO2–(x/2) solid solutions. Phys. Status Solidi., 1981, 63(1): 229.

[46]

Ghayour H., Abdellahi M. A brief review of the effect of grain size variation on the electrical properties of Ba-TiO3-based ceramics. Powder Technol., 2016, 292, 84.

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/