Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi–TiO high-entropy alloy

Qing-dong Qin , Jin-bo Qu , Yong-e Hu , Yu-jiao Wu , Xiang-dong Su

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (11) : 1286 -1293.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (11) : 1286 -1293. DOI: 10.1007/s12613-018-1681-9
Article

Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi–TiO high-entropy alloy

Author information +
History +
PDF

Abstract

CoCrCuFeNi–TiO was prepared by arc melting of the pure elements and Ti2CO powder under an Ar atmosphere. Both CoCrCu-FeNi and CoCrCuFeNi–TiO alloys are composed of a face-centered cubic (fcc) solid solution, whereas the alloys of CoCrCuFeNi–TiO are basically composed of an fcc solid solution and TiO crystals. The microstructures of CoCrCuFeNi–TiO are identified as dendrite and interdendrite structures such as CoCrCuFeNi. The morphology of TiO is identified as an equiaxed crystal with a small amount of added Ti2CO. By increasing the amount of Ti2CO added, the TiO content was dramatically increased and part of the equiaxed crystals changed to a dendrite structure. A test of the oxidation resistance demonstrates that the oxidation resistance of CoCrCuFeNi–TiO is better than that of CoCr-CuFeNi. However, as the TiO content increases further, a corresponding decrease is observed in the oxidation resistance.

Keywords

multicomponent equiatomic / high-entropy alloys / microstructure / oxidation resistance

Cite this article

Download citation ▾
Qing-dong Qin, Jin-bo Qu, Yong-e Hu, Yu-jiao Wu, Xiang-dong Su. Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi–TiO high-entropy alloy. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(11): 1286-1293 DOI:10.1007/s12613-018-1681-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma D. C., Yao M. J., Pradeep K. G., Tasan C. C., Springer H., Raabe D. Phase stability of non-equiatomic CoCr-FeMnNi high entropy alloys. Acta Mater., 2015, 98, 288.

[2]

Wang H. L., Gao T. X., Niu J. Z., Shi P. J., Xu J., Wang Y. Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering. Int. J. Miner. Metall. Mater., 2016, 23(1): 77.

[3]

Zuo T. T., Ren S. B., Liaw P. K., Zhang Y. Processing effects on the magnetic and mechanical properties of FeCoNi-Al0.2Si0.2 high entropy alloy. Int. J. Miner. Metall. Mater., 2013, 20(6): 549.

[4]

Yeh J. W., Chen S. K., Lin S. J., Gan J. Y., Chin T. S., Shun T. T., Tsau C. H., Chang S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[5]

Li R. X., Liaw P. K., Zhang Y. Synthesis of Al xCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Mater. Sci. Eng. A, 2017, 707, 668.

[6]

Mohanty S., Maity T. N., Mukhopadhyay S., Sarkar S., Gurao N. P., Bhowmick S., Biswas K. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng. A, 2017, 679, 299.

[7]

Zhang W. R., Liaw P. K., Zhang Y. Science and technology in high-entropy alloys. Sci. China Mater., 2018, 61(1): 2.

[8]

Raghavan R., Kirchlechner C., Jaya B. N., Feuerbacher M., Dehm G. Mechanical size effects in a single crystalline equiatomic FeCrCoMnNi high entropy alloy. Scripta Mater., 2017, 129, 52.

[9]

Gao M. C., Yeh W., Liaw P. K., Zhang Y. High-Entropy Alloys Fundamentals and Applications, 2016, Switzerland, Springer International Publishing 32.

[10]

Wu Z. G., Gao Y. F., Bei H. B. Thermal activation mechanisms and labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Mater., 2016, 120, 108.

[11]

Vishwanadh B., Sarkar N., Gangil S., Singh S., Tewari R., Dey G. K., Banerjee S. Synthesis and microstructural characterization of a novel multicomponent equiatomic ZrNbAlTiV high entropy alloy. Scripta Mater., 2016, 124, 146.

[12]

Pradeep K. G., Tasan C. C., Yao M. J., Deng Y., Springer H., Raabe D. Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Mater. Sci. Eng. A, 2015, 648, 183.

[13]

Cheng J. B., Liang X. B., Xu B. S. Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings. Surf. Coat. Technol., 2014, 240, 184.

[14]

Singh S., Wanderka N., Murty B. S., Glatzel U., Banhart J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater., 2011, 59(1): 182.

[15]

Braeckman B. R., Depla D. Structure formation and properties of sputter deposited Nb x–CoCrCuFeNi high entropy alloy thin films. J. Alloy Compd., 2015, 646, 810.

[16]

Cheng J. B., Liu D., Liang X. B., Chen Y. X. Evolution of microstructure and mechanical properties of in situ synthesized TiC–TiB2/CoCrCuFeNi high entropy alloy coatings. Surf. Coat. Technol., 2015, 281, 109.

[17]

Braeckman B. R., Misják F., Radnóczi G., Depla D. The influence of Ge and in addition on the phase formation of CoCrCuFeNi high-entropy alloy thin films. Thin Solid Films, 2016, 616, 703.

[18]

Hsu Y. J., Chiang W. C., Wu J. K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3. 5% sodium chloride solution. Mater. Chem. Phys., 2005, 92(1): 112.

[19]

Wang W. L., Hu L., Luo S. B., Meng L. J., Geng D. L., Wei B. Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy. Intermetallics, 2016, 77, 41.

[20]

Rogal Semi-solid processing of the CoCrCuFeNi high entropy alloy. Mater. Des., 2017, 119, 406.

[21]

Qin Q. D., Huang B. W., Li W. Microstructure and wear resistance of in situ porous TiO/Cu composites. Met. Mater. Int., 2016, 22(4): 630.

[22]

Qin Q. D., Huang B. W., Li W., Shao F. Microstructure development of in situ porous TiO/Cu composites. J. Alloys Compd., 2016, 672, 590.

[23]

Qin Q. D., Huang B. W., Li W., Zeng Z. Y. Preparation and wear resistance of aluminum composites reinforced with in Situ formed TiO/Al2O3. J. Mater. Eng. Perform., 2016, 25(5): 2029.

[24]

Blazevska-Gilev J., Jandová V., Kupčik J., Bastl Z., Šubrt J., Bezdička P., Pola J. Laser hydrothermal reductive ablation of titanium monoxide: hydrated TiO particles with modified Ti/O surface. J. Solid State Chem., 2013, 197, 337.

[25]

Valeeva A. A., Tang G., Gusev A. I., Rempel A. A. Observation of structural vacancies in titanium monoxide using transmission electron microscopy. Phys. Solid State, 2003, 45(1): 87.

[26]

Qin Q. D., Zhao Y. G., Cong P. J., Liang Y. H., Zhou W. Functionally graded Mg2Si/Al composite produced by an electric arc remelting process. J. Alloys Compd., 2006, 420(1–2): 121.

[27]

Jiao S. Q., Zhu H. M. Electrolysis of Ti2CO solid solution prepared by TiC and TiO2. J. Alloys Compd., 2007, 438(1–2): 243.

[28]

Wang X. F., Zhang Y., Qiao Y., Chen G. L. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics, 2007, 15(3): 357.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/