Effect of sintering temperature on the physical properties and electrical contact properties of doped AgSnO2 contact materials

Hai-tao Wang , Zi-xiang Wang , Lian-zheng Wang , Jing-qin Wang , Yan-cai Zhu

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (11) : 1275 -1285.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (11) : 1275 -1285. DOI: 10.1007/s12613-018-1680-x
Article

Effect of sintering temperature on the physical properties and electrical contact properties of doped AgSnO2 contact materials

Author information +
History +
PDF

Abstract

AgSnO2 electrical contact materials doped with Bi2O3, La2O3, and TiO2 were successfully fabricated by the powder metallurgy method under different initial sintering temperatures. The electrical conductivity, density, hardness, and contact resistance of the AgSnO2/Bi2O3, AgSnO2/La2O3, and AgSnO2/TiO2 contact materials were measured and analyzed. The arc-eroded surface morphologies of the doped AgSnO2 contact materials were investigated by scanning electron microscopy (SEM). The effects of the initial sintering temperature on the physical properties and electrical contact properties of the doped AgSnO2 contact materials were discussed. The results indicate that the physical properties can be improved and the contact resistance of the AgSnO2 contact materials can be substantially reduced when the materials are sintered under their optimal initial sintering temperatures.

Keywords

sintering temperature / contact materials / physical properties / electrical contact properties

Cite this article

Download citation ▾
Hai-tao Wang, Zi-xiang Wang, Lian-zheng Wang, Jing-qin Wang, Yan-cai Zhu. Effect of sintering temperature on the physical properties and electrical contact properties of doped AgSnO2 contact materials. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(11): 1275-1285 DOI:10.1007/s12613-018-1680-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jeannot D., Pinard J., Ramoni P., Jost E. M. Physical and chemical properties of metal oxide additions to AgSnO2 contact materials and predictions of electrical performance. IEEE Trans. Compon. Packag. Manuf. Technol. Part A, 1994, 17(1): 17.

[2]

Nilsson O., Hauner F., Jeannot D. Replacement of AgCdO by AgSnO2 in DC contactors. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts Electrical Contacts, 2004 70.

[3]

Hauner F., Jeannot D., McNeilly K., Pinard J. Advanced AgSnO2 contact materials for the replacement of AgCdO in high current contactors. Electrical Contacts - 2000. Proceedings of the Forty-Sixth IEEE Holm Conference on Electrical Contacts (Cat. No. 00CB37081), 2000 225.

[4]

Zhu Y., Wang J. Preparation and study on performance for silver rare-earth alloy electrical contact materials. 2010 Proceedings of the 56th IEEE Holm Conference on Electrical Contacts, 2010 1.

[5]

Zoz H., Ren H., Späth N. Improved Ag−SnO2 electrical contact material produced by mechanical alloying. Metall, 1999, 53(7–8): 423.

[6]

Findik F., Uzun H. Microstructure, hardness and electrical properties of silver-based refractory contact materials. Mater. Des., 2003, 24(7): 489.

[7]

Lin Z. J., Liu S. H., Li J. G., Chen J. L., Xie M., Li X. D., Zhang M., Zhu Q., Huo D., Sun X. D. Morphology- controllable synthesis and thermal decomposition of Ag and Ni oxalate for Ag-Ni alloy electrical contact materials. Mater. Des., 2016, 108, 640.

[8]

Yang T. Z., Du Z. J., Gu Y. Y., Qiu X. Y., Jiang M. X. Preparation of AgSnO2 composite powders by hydrothermal process. J. Cent. South Univ. Technol., 2007, 14(2): 176.

[9]

Chi L., Streicher E., Fitzgerald D. Welding behavior of AgSnO2 contact material with microstructure and additive modifications. Electrical Contacts, 2004. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts, 2004 64.

[10]

Leung C., Streicher E., Fitzgerald D., Cook J. Contact erosion of AgSnO2/In2O3 made by internal oxidation and powder metallurgy. Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts, 2005 22.

[11]

Liu L. Q., Yan X. F., Weng W., Xie J. F., Zheng N. The investigation on the production process of AgSnO2 Contact Materials by AgSn alloy powder pre-oxidation. 26th International Conference on Electrical Contacts (ICEC 2012), 2012 362.

[12]

Ćosović V., Talijan N., Živković D., Minić D., Živković Comparison of properties of silver–metal oxide electrical contact materials. J. Min. Metall. Sect. B, 2012, 48(1): 131.

[13]

Qiao X. Q., Shen Q. H., Zhang L. J., Chen L., Fan X. P., Yang H. A novel method for the preparation of Ag/SnO2 electrical contact materials. Rare Met. Mater. Eng., 2014, 43(11): 2614.

[14]

Liu X. M., Wu S. L., Chu P. K., Chung C. Y., Zheng J., Li S. L. Effects of coating process on the characteristics of Ag−SnO2 contact materials. Mater. Chem. Phys., 2006, 98, 477.

[15]

Brisson E., Carre P., Desplats H., Rogeon P., Keryvin V., Bonhomme A. Effective thermal and electrical conductivities of AgSnO2 during sintering. Part I: Experimental characterization and mechanisms. Metall. Mater. Trans. A, 2016, 47(12): 6304.

[16]

Smiljanić I., Smontara A., Bilušić A., Barišić N., Stanić D., Lukatela J., Dolinšek J., Feuerbacher M., Grushko B. Thermal and electrical conductivities in Al-based complex metallic alloys. Philos. Mag., 2008, 88(13–15): 2155.

[17]

Aksöz S., Maraşl N. Thermal and electrical conductivities of silver−indium−tin alloys. J. Phys. Chem. Solids, 2012, 73(7): 902.

[18]

Liu Y. Effect of Wettability on the Electrical Contact Properties of AgSnO2 Contact Materials [Dissertation], 2015, Tianjin, Hebei University of Technology 22.

[19]

Setoudeh N., Paydar M. H., Sajjadnejad M. Effect of high energy ball milling on the reduction of nickel oxide by zinc powder. J. Alloys Compd., 2015, 623, 117.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/