Morphology and quantitative analysis of O phase during heat treatment of hot-deformed Ti2AlNb-based alloy

Hong-yu Zhang , Chong Li , Zong-qing Ma , Li-ming Yu , Hui-jun Li , Yong-chang Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (10) : 1191 -1200.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (10) : 1191 -1200. DOI: 10.1007/s12613-018-1671-y
Article

Morphology and quantitative analysis of O phase during heat treatment of hot-deformed Ti2AlNb-based alloy

Author information +
History +
PDF

Abstract

A 1040°C-hot-deformed Ti2AlNb-based alloy solution-treated at 950°C and aged at different temperatures was quantitatively investigated. The microstructure, size of the phase, and microhardness of the deformed alloys were measured. The results indicated that the microstructure of the deformed Ti2AlNb-based alloy specimens comprise coarse O lath, fine O lath, equiaxed O/α2, and acicular O phase. More O phase was generated in the deformed alloy after heat treatment because the acicular O phase was more likely to nucleate and grow along the deformation-induced crystal defects such as dislocations and subgrain boundaries. After deformation and subsequent heat treatment, the acicular O phase of the resultant alloy became finer compared to that of the undeformed alloy, and the acicular O phase became coarser and longer with the elevated aging temperature, while the width of the O lath exhibited unobvious variations. The hot deformation facilitated the dissolution of the O lath but accelerated the precipitation of the acicular O phase. When the 950°C-solution-treated deformed Ti2AlNb-based alloy was then aged at 750°C for different periods, the phase content was nearly invariable, O and B2 phases eventually reached equilibrium, and the microstructure became stable and homogeneous.

Keywords

Ti2AlNb-based alloys / hot deformation / solution treatment / aging / microstructure

Cite this article

Download citation ▾
Hong-yu Zhang, Chong Li, Zong-qing Ma, Li-ming Yu, Hui-jun Li, Yong-chang Liu. Morphology and quantitative analysis of O phase during heat treatment of hot-deformed Ti2AlNb-based alloy. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(10): 1191-1200 DOI:10.1007/s12613-018-1671-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boehlert C.J. The phase evolution and microstructural stability of an orthorhombic Ti–23Al–27Nb alloy. J. Phase Equilib., 1999, 20(2): 101.

[2]

Kumpfert J. Intermetallic alloys based on orthorhombic titanium aluminide. Adv. Eng. Mater., 2001, 3(11): 851.

[3]

Emura S., Araoka A., Hagiwara M. B2 grain size refinement and its effect on room temperature tensile properties of a Ti–22Al–27Nb orthorhombic intermetallic alloy. Scripta Mater., 2003, 48(5): 629.

[4]

Wu J., Xu L., Lu Z.G., Lu B., Cui Y.Y., Yang R. Microstructure design and heat response of powder metallurgy Ti2AlNb alloys. J. Mater. Sci. Technol., 2015, 31(12): 1251.

[5]

Zong Y.Y., Shao B., Tian Y.T., Shan D.B. A study of the sharp yield point of a Ti–22Al–25Nb alloy. J. Alloys Compd., 2017, 701, 727.

[6]

Shao B., Zong Y.Y., Wen D.S., Tian Y.T., Shan D.B. Investigation of the phase transformations in Ti–22Al–25Nb alloy. Mater. Charact., 2016, 114, 75.

[7]

Feng X., Qiu J.K., Ma Y.J., Lei J.F., Cui Y.Y., Wu X.H., Yang R. Influence of processing conditions on microstructure and mechanical properties of large thin–wall centrifugal Ti–6Al–4V casting. J. Mater. Sci. Technol., 2016, 32(4): 362.

[8]

Liu Y.C., Lan F., Yang G.C., Zhou Y.H. Microstructural evolution of rapidly solidified Ti–Al peritectic alloy. J. Cryst.Growth, 2004, 271(1–2): 313.

[9]

Małecka J. Investigation of the oxidation behavior of orthorhombic Ti2AlNb Alloy. J. Mater. Eng. Perform., 2015, 24(5): 1834.

[10]

Sadi F.A., Servant C. On the B2 → O phase transformation in Ti−Al−Nb alloys. Mater. Sci. Eng. A, 2003

[11]

Germann L., Banerjee D., Guedou J.Y., Strudel J.L. Effect of composition on the mechanical properties of newly developed Ti2AlNb–based titanium aluminide. Intermetallics, 2005, 13(9): 920.

[12]

Nandy T.K., Banerjee D. Creep of the orthorhombic phase based on the intermetallic Ti2AlNb. Intermetallics, 2000, 8(8): 915.

[13]

Boehlert C.J. Microstructure, creep, and tensile behavior of a Ti–12Al–38Nb (at.%) beta+orthorhombic alloy. Mater. Sci. Eng. A, 1999, 267(1): 82.

[14]

Cowen C.J., Boehlert C.J. Microstructure, creep, and tensile behavior of a Ti–21Al–29Nb (at.%) orthorhombic+B2 alloy. Intermetallics, 2006, 14(4): 412.

[15]

Nandy T.K., Banerjee D. Deformation mechanisms in the O phase, Intermetallics, 2000, 8(9–11): 1269.

[16]

Yang S.J., Nam S.W., Hagiwara M. Phase identification and effect of W on the microstructure and micro–hardness of Ti2AlNb–based intermetallic alloys. J. Alloys Compd., 2003, 350(1): 280.

[17]

Boehlert C.J. Part III. The tensile behavior of Ti–Al–Nb O+Bcc orthorhombic alloys. Metall. Mater. Trans. A, 2001, 32(8): 1977.

[18]

Zhang T.B., Huang G., Hu R., Li J.S. Microstructural stability of long term aging treated Ti–22Al–26Nb–1Zr orthorhombic titanium aluminide. Trans. Nonferrous Met. Soc. China, 2015, 25(8): 2549.

[19]

Dey S.R., Suwas S., Fundenberger J.J., Zou J.X., Grosdidier T., Ray R.K. Evolution of hot rolling texture in β (B2)–phase of a two–phase (O+B2) titanium–aluminide alloy. Mater. Sci. Eng. A, 2008, 483(1): 551.

[20]

Zhang H., Li H.J., Guo Q.Y., Liu Y.C., Yu L.M. Hot deformation behavior of Ti–22Al–25Nb alloy by processing maps and kinetic analysis. J. Mater. Res., 2016, 31(12): 1764.

[21]

Qin C., Yao Z.K., Ning Y.Q., Shi Z.F., Guo H.Z. Hot deformation behavior of TC11/Ti–22Al–25Nb dual–alloy in isothermal compression. Trans. Nonferrous Met. Soc. China, 2015, 25(7): 2195.

[22]

Ma X., Zeng W.D., Xu B., Sun Y., Xue C., Han Y.F. Characterization of the hot deformation behavior of a Ti–22Al–25Nb alloy using processing maps based on the Murty criterion. Intermetallics, 2012, 20(1): 1.

[23]

Zhang J.L., Guo H.Z., Liang H.Q. Dynamic recrystallization behavior of Ti22Al25Nb alloy during hot isothermal deformation. High Temp. Mater. Processes, 2016, 35(10): 1021.

[24]

Jia J.B., Zhang K.F., Lu Z. Dynamic globularization kinetics of a powder metallurgy Ti–22Al–25Nb alloy with initial lamellar microstructure during hot compression. J. Alloys Compd., 2014, 617, 429.

[25]

Jia J.B., Zhang K.F., Lu Z. Dynamic recrystallization kinetics of a powder metallurgy Ti–22Al–25Nb alloy during hot compression. Mater. Sci. Eng. A, 2014, 607, 630.

[26]

Boehlert C.J., Majumdar B.S., Seetharaman V., Miracle D.B. Part I. The microstructural evolution in Ti–Al–Nb O + Bcc orthorhombic alloys. Metall. Mater. Trans. A, 1999, 30(9): 2305.

[27]

Semiatin S.L., Smith P.R. Microstructural evolution during rolling of Ti–22Al–23Nb sheet. Mater. Sci. Eng. A, 1995, 202(1–2): 26.

[28]

Muraleedharan K., Banerjee D., Banerjee S., Lele S. The α2–to–O transformation in Ti–Al–Nb alloys. Phil Mag. A, 1995, 71(5): 1011.

[29]

Chen X., Xie F.Q., Ma T.J., Li W.Y., Wu X.Q. Microstructural evolution and mechanical properties of linear friction welded Ti2AlNb joint during solution and aging treatment. Mater. Sci. Eng. A, 2016, 668, 125.

[30]

Muraleedharan K., Nandy T.K., Banerjee D. Phase stability and ordering behaviour of the O phase in Ti–Al–Nb alloys. Intermetallics, 1995, 3(3): 187.

[31]

Muraleedharan K., Gogia A.K., Nandy T.K., Banerjee D., Lele S. Transformations in a Ti–24Al–15Nb alloy: Part I. Phase equilibria and microstructure. Metall. Mater. Trans. A, 1992, 23(2): 401.

[32]

Stefansson N., Semiatin S.L. Mechanisms of globularization of Ti–6Al–4V during static heat treatment. Metall. Mater. Trans. A, 2003, 34(3): 691.

[33]

Liu Y.C., Yang G.C., Zhou Y.H. High–velocity banding structure in the laser–resolidified hypoperitectic Ti47Al53 alloy. J. Cryst. Growth, 2002, 240(3): 603.

[34]

Xue C., Zeng W.D., Wang W., Liang X.B., Zhang J.W. Coarsening behavior of lamellar orthorhombic phase and its effect on tensile properties for the Ti–22Al–25Nb alloy. Mater. Sci. Eng. A, 2014, 611, 320.

[35]

Wang W., Zeng W.D., Xue C., Liang X.B., Zhang J.W. Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti–22Al–25Nb (at.%) orthorhombic alloy. Intermetallics, 2014, 45(2): 29.

[36]

Rietveld H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr., 1969, 2(2): 65.

[37]

Seshacharyulu T., Dutta B. Influence of prior deformation rate on the mechanism of β→α+β transformation in Ti–6Al–4V. Scripta Mater., 2002, 46(9): 673.

[38]

Teixeira J.D.C., Appolaire B., Aeby–Gautier E., Denis S., Bruneseaux F. Modeling of the effect of the β phase deformation on the α phase precipitation in near–β titanium alloys. Acta Mater., 2006, 54(16): 4261.

[39]

Banerjee D. The intermetallic Ti2AlNb. Prog. Mater. Sci., 1997, 42(1–4): 135.

[40]

Li M.C., Cai Q., Liu Y.C., Ma Z.Q., Wang Z.M., Huang Y., Yu J.X. Dual structure O+B2 for enhancement of hardness in furnace–cooled Ti2AlNb–based alloys by powder metallurgy. Adv. Powder Technol., 2017, 28, 1719.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/