Tensile properties of tungsten-rhenium wires with nanofibrous structure

Na-na Qiu , Yin Zhang , Cheng Zhang , Huan Tong , Xi-ping Song

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (9) : 1055 -1059.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (9) : 1055 -1059. DOI: 10.1007/s12613-018-1656-x
Article

Tensile properties of tungsten-rhenium wires with nanofibrous structure

Author information +
History +
PDF

Abstract

In this study, the mechanical properties of tungsten-rhenium wires with nanofibrous microstructure were investigated at both room temperature (RT) and 800°C. The strengthening mechanism associated to the nanofibrous microstructure was discussed. The results showed that the tungsten-rhenium wires with nanofibrous grains exhibited a very high tensile strength reaching values of 3.5 GPa and 4.4 GPa for the coarse (grains diameter of 240 nm) and fine (grains diameter of 80 nm) wires, respectively. With increasing the temperature from RT to 800°C, the tensile strength decreased slightly but still held high values (1.8 GPa and 3.8 GPa). All the fracture surfaces exhibited apparent necking and characteristics of spear-edge shaped fracture surface, indicating excellent ductility of the wires. A model of the strengthening mechanism of these tungsten-rhenium wires was proposed.

Keywords

tungsten-rhenium wire / mechanical properties / nanofibrous microstructure / tensile strength

Cite this article

Download citation ▾
Na-na Qiu, Yin Zhang, Cheng Zhang, Huan Tong, Xi-ping Song. Tensile properties of tungsten-rhenium wires with nanofibrous structure. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(9): 1055-1059 DOI:10.1007/s12613-018-1656-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antolini E., Gonzalez E.R. Tungsten-based materials for fuel cell applications. Appl. Catal., B, 2010, 96(3-4): 245.

[2]

Kurishita H., Amano Y., Kobayashi S., Nakai K., Arakawa H., Hiraoka Y., Takida T., Takebe K., Matsui H. Development of ultra-fine grained W−TiC and their mechanical properties for fusion applications. J. Nucl. Mater., 2007, 367, 1453.

[3]

Coenen J.W., Antusch S., Aumann M., Biel W., Du J., Engels J., Heuer S., Houben A., Hoeschen T., Jasper B., Koch F., Linke J., Litnovsky A., Mao Y., Neu R., Pintsuk G., Riesch J., Rasinski M., Reiser J., Rieth M., Terra A., Unterberg B., Weber T., Wegener T., You J.H., Linsmeier C. Materials for DEMO and reactor applications-boundary conditions and new concepts. Phys. Scr., 2015

[4]

Wang J.J., Chao X.L., Li G.Z., Fang L.J., Zhao K., Ning T.T. Dielectric properties of tungsten copper barium ceramic as promising colossal-permittivity Material. J. Electron. Mater., 2017, 46(8): 4697.

[5]

Rupp D., Mönig R., Gruber P., Weygand S.M. Fracture toughness and microstructural characterization of polycrystalline rolled tungsten. Int. J. Refract. Met. Hard Mater., 2010, 28(6): 669.

[6]

Wurster S., Gludovatz B., Hoffmann A., Pippan R. Fracture behaviour of tungsten-vanadium and tungsten-tantalum alloys and composites. J. Nucl. Mater., 2011, 413(3): 166.

[7]

Xia M., Yan Q.Z., Xu L., Guo H.Y., Zhu L.X., Ge C.C. Bulk tungsten with uniformly dispersed La2O3 nanoparticles sintered from co-precipitated La2O3/W nanoparticles. J. Nucl. Mater., 2013, 434(1-3): 85.

[8]

Skotnicova K., Kirillova V.M., Ermishkin V.A., Cegan T., Jurica J., Kraus M., Burkhanov G.S. Influence of alloying and testing conditions on mechanical properties and deformation behavior of <100> tungsten-based single crystals. Mater. Sci. Eng. A., 2015, 636, 536.

[9]

Mutoh Y., Ichikawa K., Nagata K., Takeuchi M. Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures. J. Mater. Sci., 1995, 30(3): 770.

[10]

Wurster S., Gludovatz B., Pippan R. High temperature fracture experiments on tungsten-rhenium alloys. Int. J. Refract. Met. Hard Mater., 2010, 28(6): 692.

[11]

M. Fukuda, S. Nogami, K. Yabuuchi, A. Hasegawa, and T. Muroga, Anisotropy in the mechanical properties of potassium and rhenium doped tungsten alloy plates for fusion reactor applications, Fusion Sci. Technol., 68(2015), No.3, p. 690.

[12]

Zhang B.Y., Chen X.H., Wang S.S., Lin D.Y., Hui X.D. High strength tungsten wire reinforced Zr-based bulk metallic glass matrix composites prepared by continuous infiltration process. Mater. Lett., 2013, 93, 210.

[13]

Riesch J., Han Y., Almanstötter J., Coenen J.W., Höschen T., Jasper B., Zhao P., Linsmeier C., Neu R. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO-potassium doped tungsten wire. Phys. Scr., 2016

[14]

Du J., Höschen T., Rasinski M., Wurster S., Grosinger W., You J.H. Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings. Compos. Sci. Technol., 2010, 70(10): 1482.

[15]

Zhao P., Riesch J., Höschen T., Almanstötter J., Balden M., Coenen J.W., Himml R., Pantleon W., von Toussaint U., Neu R. Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments. Int. J. Refract. Met. Hard Mater., 2017, 68, 29.

[16]

Schade P. 100 years of doped tungsten wire. Int. J. Refract. Met. Hard Mater., 2010, 28(6): 648.

[17]

Hosford W.F. Jr. Microstructural changes during deformation of (011) fiber-textured metals. Trans. Metall. Soc. AIME, 1964

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/