Mineral-phase evolution and sintering behavior of MO–SiO2–Al2O3–B2O3 (M = Ca, Ba) glass-ceramics by low-temperature liquid-phase sintering

Song Chen , Zhen Sun , De-gui Zhu

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (9) : 1042 -1054.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (9) : 1042 -1054. DOI: 10.1007/s12613-018-1655-y
Article

Mineral-phase evolution and sintering behavior of MO–SiO2–Al2O3–B2O3 (M = Ca, Ba) glass-ceramics by low-temperature liquid-phase sintering

Author information +
History +
PDF

Abstract

In this work, network former SiO2 and network intermediate Al2O3 were introduced into typical low-melting binary compositions CaO·B2O3, CaO·2B2O3, and BaO·B2O3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950°C. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO–SiO2–Al2O3–B2O3 (M = Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al20B4O36, CaAl2Si2O8, and BaAl2Si2O8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties.

Keywords

glass-ceramics / liquid-phase sintering / aluminosilicate / mineral phase / microstructures

Cite this article

Download citation ▾
Song Chen, Zhen Sun, De-gui Zhu. Mineral-phase evolution and sintering behavior of MO–SiO2–Al2O3–B2O3 (M = Ca, Ba) glass-ceramics by low-temperature liquid-phase sintering. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(9): 1042-1054 DOI:10.1007/s12613-018-1655-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma M.S., Khan H., Shan W., Wang Y.C., Ou J.Z., Liu Z.F., Kalantar-zadeh K., Li Y.X. A novel wireless gas sensor based on LTCC technology. Sens. Actuators B, 2017, 239, 711.

[2]

Jiang B., Maeder T., Santis-Alvarez A.J., Poulikakos D., Muralt P. A low-temperature co-fired ceramic micro-reactor system for high-efficiency on-site hydrogen production. J. Power Sources, 2015, 273, 1202.

[3]

Ding Y.Y., Liu S.X., Li X.Y., Wang R., Zhou J. Luminescent low temperature co-fired ceramics for high power LED package. J. Alloys Compd., 2012, 521, 35.

[4]

Li Y.X., Xie Y.S., Xie R., Chen D.M., Zhang H.W. A co-fireable materials system for ceramics and ferrites hetero-laminates in LTCC substrates. J. Alloys Compd., 2018, 737, 144.

[5]

Höland W., Beall G.H. Handbook of Advanced Ceramics (2nd edition), Edited by Shigeyuki Somiya, Academics Press, 2013, MA, Waltham.

[6]

Khedim H., Nonnet H., Méar F.O. Development and characterization of glass-ceramic sealants in the (CaO−Al2O3−SiO2−B2O3) system for solid oxide electrolyzer cells. J. Power Sources, 2012, 216, 227.

[7]

Da Silva M.J., Bartolomé J.F., De Aza A.H., Mello-Castanho S. Glass ceramic sealants belonging to BAS (BaO−Al2O3−SiO2) ternary system modified with B2O3 addition: A different approach to accessthe SOFC seal issue. J. Eur. Ceram. Soc., 2016

[8]

Mimoso R. M.C., Albuquerque D. M.S., Pereira J.M.C., Pereira J.C.F. Simulation and control of continuous glass melting by microwave heating in a single-mode cavity with energy efficiency optimization. Int. J. Therm. Sci., 2017, 111, 175.

[9]

Chen S., Zhou X.H., Zhang S.R., Li B., Zhang T. Low temperature preparation of the β-CaSiO3 ceramics based on the system CaO−SiO2−BaO−B2O3. J. Alloys Compd., 2010, 505(2): 613.

[10]

Chen S., Zhu D.G. Low-temperature densification sintering and properties of CaAl2Si2O8 ceramics with MeO·2B2O3 (Me=Ca, Sr, Ba). Int. J. Miner. Metall. Mater., 2015, 22(9): 977.

[11]

Vartanyan M.A., Lukin E.S., Popova N.A. Low firing temperature ceramic for microcircuit substrates. Glass Ceram., 2008, 65(1-2): 27.

[12]

Cui X.M., Zhou J. A simple and an effective method for the fabrication of densified glass-ceramics of low temperature co-fired ceramics. Mater. Res. Bull., 2008, 43(6): 1590.

[13]

Kavalci S., Yalamac E., Akkurt S. Effects of boron addition and intensive grinding on synthesis of anorthite ceramics. Ceram. Int., 2008, 34(7): 1629.

[14]

Mergen A., Kayed T.S., Bilen M., Qasrawi A.F., Gürü M. Production of anorthite from kaolinite and CaCO3 via colemanite. Key Eng. Mater., 2004, 264, 1475.

[15]

Levin E. M., Robbins C. R., McMurdie H. F. Phase Diagrams for Ceramists, 1964, Columbus, Ceramic Society.

[16]

Cheng Y., Xiao H.N., Chen S.G., Tang B.Z. Structure and crystallization of B2O3−Al2O3−SiO2 glasses. Physica B, 2009, 404(8-11): 1230.

[17]

Hou Z.X., Wang S.H., Xue Z.L., Lu H.R., Niu C.L., Wang H., Sun B., Su C.H. Crystallization and microstructural characterization of B2O3−Al2O3−SiO2 glass. J. Non-Cryst. Solids, 2010, 356(4-5): 201.

[18]

Roth R.S., Dennis J.R., McMurdie H. F. Phase Diagram for Ceramists Volume VI, 1987, Westerville, the American Ceramic Society.

[19]

Tulyaganov D.U., Reddy A.A., Kharton V. V., Ferreira J.M.F. Aluminosilicate-based sealant for SOFCs and other electrochemical applications-A brief review. J. Power Sources, 2013, 242, 486.

[20]

Scholze H. Glass: Nature, Structure, and Properties, 1990, New York, Springer-Verlag.

[21]

Lee S.H., Kim D.Y., Hwang N.M. Effect of anorthite liquid on the abnormal grain growth of alumina. J. Eur. Ceram. Soc., 2012, 22(3): 317.

[22]

Park C.W., Yoon D.Y. Effects of SiO2, CaO, and MgO additions on the grain growth of alumina. J. Am. Ceram. Soc., 2000, 83(10): 2605.

[23]

Kaysser W.A., Sprissler M., Handwerker C.A., Blendell J.E. Effect of a liquid phase on the morphology of grain growth in alumina. J. Am. Ceram. Soc., 1987, 70(5): 339.

[24]

Yoon D.N., Huppmann W.J. Grain growth and densification during liquid phase sintering of W−Ni. Acta Metall., 1979, 27(4): 693.

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/