Improvement of microstructure and corrosion properties of friction stir welded AA5754 by adding Zn interlayer

Ali Shamsipur , Amir Anvari , Ahmad Keyvani

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (8) : 967 -973.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (8) : 967 -973. DOI: 10.1007/s12613-018-1646-z
Article

Improvement of microstructure and corrosion properties of friction stir welded AA5754 by adding Zn interlayer

Author information +
History +
PDF

Abstract

This study investigated the effect of Zn foil layers on the microstructure and corrosion characteristics of friction stir welded aluminum alloy 5754. Samples of various joints were prepared by applying different rotational and welding speeds, and their microstructures were evaluated via a metallographic technique and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy elemental analysis. The anticorrosion behavior of joints in the absence and presence of a Zn interlayer was studied by cyclic potentiodynamic polarization test in 3.5wt% NaCl aqueous solution, and sound welds were obtained in the presence of the Zn interlayer foil. The results revealed that the joint made at a rotational speed of 800 r/min and traveling speed of 15 mm/min achieved a chemical composition identical to that of aluminum alloy 7xxx series, and as such, it showed the best resistance to corrosion.

Keywords

friction stir welding / AA5754 aluminum alloy / zinc interlayer / microstructure / corrosion resistance

Cite this article

Download citation ▾
Ali Shamsipur, Amir Anvari, Ahmad Keyvani. Improvement of microstructure and corrosion properties of friction stir welded AA5754 by adding Zn interlayer. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(8): 967-973 DOI:10.1007/s12613-018-1646-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hirsch J. Recent development in aluminum for automotive applications. Trans. Nonferrous Met. Soc. China, 2014, 24, 1995.

[2]

Ma S.C., Zhao Y., Zou J.S., Yan K., Liu C. The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219. Opt. Laser Technol., 2017, 96, 299.

[3]

Dursun T., Soutis C. Recent developments in advanced aircraft aluminum alloys. Mater. Des., 2014, 56, 862.

[4]

Mishra R.S., Mab Z.Y. Friction stir welding and processing. Mater. Sci. Eng. R, 2005, 50(1–2): 1.

[5]

Çam G., İpekoğlu G. Recent developments in joining of aluminium alloys. Int. J. Adv. Manuf. Technol., 2017, 91(5–8): 1851.

[6]

Çam G., Mıstıkoğlu S. Recent developments in friction stir welding of Al-alloys. J. Mater. Eng. Perform., 2014, 23(6): 1936.

[7]

Çam G. Friction stir welded structural materials: beyond Al-alloys. Int. Mater. Rev., 2011, 56(1): 1.

[8]

Çam G., İpekoğlu G., Küçükömeroğlu T., Aktarer S.M. Applicability of friction stir welding to steels. J. Achiev. Mater. Manuf. Eng., 2017, 80(2): 65.

[9]

Çam G., Serindağ H.T., Çakan A., Mıstıkoğlu S., Yavuz H. The effect of weld parameters on friction stir welding of brass plates. Materialwiss. Werkstofftech., 2008, 39(6): 394.

[10]

Çam G., Mistikoglu S., Pakdil M. Microstructural and mechanical characterization of friction stir butt joint welded 63%Cu–37%Zn brass plate. Weld. J., 2009, 88(11): 225.

[11]

Küçükömeroğlu T., Şentürk E., Kara L., İpekoğlu G., Çam G. Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy. J. Mater. Eng. Perform., 2016, 25(1): 320.

[12]

Karami S., Jafarian H.R., Eivani A.R., Kheirandish S. Engineering tensile properties by controlling welding parameters and microstructure in a mild steel processed by friction stir welding. Mater. Sci. Eng. A, 2016, 670, 68.

[13]

Zoeram A.S., Anijdan S.H.M., Jafarian H.R., Bhattacharjee T. Welding parameters analysis and microstructural evolution of dissimilar joints in Al/Bronze processed by friction stir welding and their effect on engineering tensile behavior. Mater. Sci. Eng. A, 2017, 687, 288.

[14]

Saremi M.L., Mirsalehi S.E., Shamsipur A. Investigation on metallurgical structure and mechanical properties of dissimilar Al 2024/Cu FSW T-joints. Trans. Indian Inst. Met., 2017, 70(7): 1869.

[15]

Doude H., Schneider J., Patton B., Stafford S., Waters T., Varner C. Optimizing weld quality of a friction stir welded aluminum alloy. J. Mater. Process. Technol., 2015, 222, 188.

[16]

Bahrami M., Dehghani K., Besharati Givi M.K. A novel approach to develop aluminum matrix nano-composite em ploying friction stir welding technique. Mater. Des., 2014, 53, 217.

[17]

Kumar G.H., Vishwanath B., Purohit R., Ranad R.S., Rajpurohit S.S. Mechanical behavior of friction stir welding on aluminum based composite material. Mater. Today Proc., 2017, 4(4): 5336.

[18]

Çam G., Güçlüer S., Çakan A., Serindağ H.T. Mechanical properties of friction stir butt-welded Al–5086 H32 plate. Materialwiss. Werkstofftech., 2009, 40(8): 638.

[19]

Bozkurt Y., Salman S., Çam G. Effect of welding parameters on lap shear tensile properties of dissimilar friction stir spot welded AA 5754–H22/2024–T3 joints. Sci. Technol. Weld. Joining, 2013, 18(4): 337.

[20]

İpekoğlu G., Erim S., Çam G. Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions. Metall. Mater. Trans. A, 2014, 45(2): 864.

[21]

İpekoğlu G., Erim S., Gören-Kıral B., Çam G. Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates. Kovove Mater., 2013, 51(3): 155.

[22]

İpekoğlu G., Çam G. Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys. Metall. Mater. Trans. A, 2014, 45(7): 3074.

[23]

İpekoğlu G., Erim S., Çam G. Effects of temper condition and post weld heat treatment on the microstructure and mechanical properties of friction stir butt-welded AA7075 Al-alloy plates. Int. J. Adv. Manuf. Technol., 2014, 70(1–4): 201.

[24]

Gören-Kıral G. İpekoğlu, B. B., Erim S., Çam G. Investigation of the effect of temper condition friction-stir weldability of AA7075 Al-alloy plates. Mater. Tehnol., 2012, 46(6): 627.

[25]

Khayyamin D., Mostafapour A., Keshmiri R. The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP. Mater. Sci. Eng. A, 2013, 559, 217.

[26]

Abbasi Gharacheh M., Kokabi A.H., Daneshi G.H., Shalchi B., Sarrafi R. The influence of the ratio of “rotational speed/traverse speed” (ω/υ) on mechanical properties of AZ31 friction stir welds. Int. J. Mach. Tools Manuf., 2006, 46, 1983.

[27]

Bahrami M., Farahmand Nikoo M., Besharati Givi M.K. Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075–O FSW joints prepared through two passes. Mater. Sci. Eng. A, 2015, 626, 220.

[28]

Patel V.K., Bhole S.D., Chen D.L. Influence of ultrasonic spot welding on microstructure in a magnesium alloy. Scripta Mater., 2011, 65(10): 911.

[29]

Haghshenas M., Abdel-Gwad A., Omran A.M., Gökçe B., Sahraeinejad S., Gerlich A.P. Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels. Mater. Des., 2014, 55, 442.

[30]

Liu F., Ren D.X., Liu L.M. Effect of Al foils interlayer on microstructures and mechanical properties of Mg-Al butt joints welded by gas tungsten arc welding filling with Zn filler metal. Mater. Des., 2013, 46, 419.

[31]

Yang S.L., Zhang J., Lian J., Lei Y.P. Welding of aluminum alloy to zinc coated steel by cold metal transfer. Mater. Des., 2013, 49, 602.

[32]

Çam G., İpekoğlu G., Tarık Serindağ H. Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints. Sci. Technol. Weld. Joining, 2014, 19(8): 715.

[33]

Xu R.Z., Ni D.R., Yang Q., Liu C.Z., Ma Z.Y. Influencing mechanism of Zn interlayer addition on hook defects of friction stir spot welded Mg–Al–Zn alloy joints. Mater. Des., 2015, 69, 163.

[34]

Abdolahzadeh A., Omidvar H., Safarkhanian M.A., Bahrami M. Studying microstructure and mechanical properties of SiC-incorporated AZ31 joints fabricated through FSW: the effects of rotational and traveling speeds. Int. J. Adv. Manuf. Technol., 2014, 75(5–8): 1189.

[35]

Mahoney M.W., Rhodes C.G., Flintoff J.G., Bingel W.H., Spurling R.A. Properties of friction-stir-welded 7075 T651 aluminum. Metall. Mater. Trans. A, 1998, 29(7): 1955.

[36]

Abnar B., Kazeminezhad M., Kokabi A.H. Effects of heat input in friction stir welding on microstructure and mechanical properties of AA3003–H18 plates. Trans. Nonferrous Met. Soc. China, 2015, 25(7): 2147.

[37]

Gharavi F., Matori K.A., Yunus R., Othman N.K., Fadaeifard F. Corrosion behavior of Al6061 alloy weldments produced by friction stir welding process. J. Mater. Res. Technol., 2015, 4(3): 314.

[38]

Donatus U. Corrosion behaviour of friction stir welded aluminium alloys: unpredictability and protection. Res. Dev. Mater. Sci., 2017, 2(2): 532.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/