Preparation and electrochemical performance of double perovskite La2CoMnO6 nanofibers

Jie Fu , Heng-yan Zhao , Jie-run Wang , Yu Shen , Ming Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (8) : 950 -956.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (8) : 950 -956. DOI: 10.1007/s12613-018-1644-1
Article

Preparation and electrochemical performance of double perovskite La2CoMnO6 nanofibers

Author information +
History +
PDF

Abstract

Through electrospinning, La2CoMnO6 nanofibers were prepared from a polyvinylpyrrolidone/lanthanum nitrate-cobalt acetate-manganese acetate (PVP/LCM) precursor and were used as electrode materials. The morphologies and structures of the samples were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) specific surface area analysis. The results show that the prepared La2CoMnO6 nanofibers are stable, one-dimensional structures formed from interconnected La2CoMnO6 nanoparticles with a diamond-like crystal structure. The specific surface area of the fibers is 79.407 m2·g−1. Electrochemical performance tests with a three-electrode system reveal the specific capacitance of the La2CoMnO6 nanofibers as 109.7 F·g−1 at a current density of 0.5 A·g−1. After 1000 charge-discharge cycles at a current density of 1 A·g−1, the specific capacitance maintains 90.9% of its initial value, demonstrating a promising performance of the constraint capacitance and good cyclic stability.

Keywords

electrospinning / double perovskite / super capacitor / electrode materials

Cite this article

Download citation ▾
Jie Fu, Heng-yan Zhao, Jie-run Wang, Yu Shen, Ming Liu. Preparation and electrochemical performance of double perovskite La2CoMnO6 nanofibers. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(8): 950-956 DOI:10.1007/s12613-018-1644-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma G.F., Feng E.K., Sun K.J., Peng H., Li J.J., Lei Z.Q. A novel and high-effective redox-mediated gel polymer electrolyte for supercapacitor. Electrochim. Acta, 2014, 135, 461.

[2]

Faraji S., Ani F.N. The development supercapacitor from activated carbon by electroless plating−A review. Renew. Sust. Energy Rev., 2014, 42, 823.

[3]

Forse A.C., Griffin J.M., Merlet C., Carretero-Gonzalez J., Raji A.R.O., Trease N.M., Grey C.P. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy, 2017, 2, 16216.

[4]

Wang G. Study on the Preparation and Properties of Electrode Materials for Supercapacitors [Dissertation], 2011, Beijing, Tsinghua University 5.

[5]

Mohamed S.G., Chen C.J., Chen C.K., Hu S.F., Liu R.S. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes. ACS Appl. Mater. Interfaces, 2014, 6(24): 22701.

[6]

Mohamed S.G., Hung T.F., Chen C.J., Chen C.K., Hu S.F., Liu R.S. Efficient energy storage capabilities promoted by hierarchical MnCo2O4 nanowire-based architectures. RSC Adv., 2014, 4(33): 17230.

[7]

Xu J.S., Sun Y.D., Lu M.J., Wang L., Zhang J., Qian J.H., Liu X.Y. Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chem. Eng. J., 2018, 334, 1466.

[8]

Hu M.Z., Zhou D.X., Zhang D.L., Lu W.Z., Li B.Y., Huang J., Gong S.P. Microwave dielectric properties of (PbCa)(FeNbZr)O3 ceramics. Mater. Sci. Eng. B, 2003, 99(1–3): 403.

[9]

Gao J., Hu F.X. The abnormal electroresistance behavior observed in epitaxial La0.8Ca0.2MnO3 thin films. Thin Solid Films, 2006, 515(2): 555.

[10]

K. Yoshimatsu, K. Nogami, K. Watarai, K. Horiba, H. Kumigashira, O. Sakata, T. Oshima, and A. Ohtomo, Synthesis and magnetic properties of double-perovskite oxide La2MnFeO6 thin films, Phys. Rev. B, 91(2015), No. 5, art. No. 054421.

[11]

Hamakawa S., Li L., Li A.W., Iglesia E. Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3–δ thin films. Solid State Ionics, 2002, 148(1–2): 71.

[12]

Rajendran D.N., Nair K.R., Rao P.P., Sibi K.S., Koshy P., Vaidyan V.K. New perovskite type oxides: NaATiMO6 (A = Ca or Sr; M = Nb or Ta) and their electrical properties. Mater. Lett., 2008, 62(4–5): 623.

[13]

R.I. Dass and J.B. Goodenough, Multiple magnetic phases of La2CoMnO6–δ (0 ≤ δ ≤ 0.05), Phys. Rev. B, 67(2003), No. 1, art. No. 014401.

[14]

Zhao S., Lan C.F., Ma J., Pandey S.S., Hayase S.Z., Ma T.L. First principles study on the electronic and optical properties of B-site ordered double perovskite Sr2MMoO6 (M = Mg, Ca, and Zn). Solid State Commun., 2015, 213–214, 19.

[15]

Rogado N.S., Li J., Sleight A.W., Subramanian M.A. Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6. Adv. Mater., 2005, 17(18): 2225.

[16]

Y. Liu, Z.B. Wang, J.P.M. Veder, Z.Y. Xu, Y.J. Zhong, W. Zhou, M.O. Tade, S.B. Wang, and Z.P. Shao, Highly defective layered double perovskite oxide for efficient energy storage via reversible pseudocapacitive oxygen-anion intercalation, Adv. Energy Mater., 8(2018), art. No. 1702604.

[17]

Xiang J., Chu Y.Q., Zhou G.Z., Guo Y.T. Electrospinning-based preparation of LaMO3 (M = Co, Fe, Mn) nanofibers and its characterization. J. Jiangsu Univ. Sci. Technol. Nat. Sci. Ed., 2011, 25(1): 31.

[18]

Cao Y., Lin B.P., Sun Y., Yang H., Zhang X.Q. Structure, morphology and electrochemical properties of LaxSr1–xCo0.1Mn0.9O3–δ perovskite nanofibers prepared by electrospinning method. J. Alloys Compd., 2015, 624, 31.

[19]

Wu Y.B., Bi J., Wei B.B. Preparation and supercapacitor properties of double-perovskite La2CoNiO6 inorganic nanofibers. Acta Phys.-Chim. Sin., 2015, 31(2): 315.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/