Effect of austenitization temperature on microstructure and mechanical properties of low-carbon-equivalent carbidic austempered ductile iron

Vinayak Dakre , D. R. Peshwe , S. U. Pathak , Ajay Likhite

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (7) : 770 -778.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (7) : 770 -778. DOI: 10.1007/s12613-018-1625-4
Article

Effect of austenitization temperature on microstructure and mechanical properties of low-carbon-equivalent carbidic austempered ductile iron

Author information +
History +
PDF

Abstract

The wear resistances of austempered ductile iron (ADI) were improved through introduction of a new phase (carbide) into the matrix by addition of chromium. In the present investigation, low-carbon-equivalent ductile iron (LCEDI) (CE = 3.06%, and CE represents carbon- equivalent) with 2.42% chromium was selected. LCEDI was austenitized at two different temperatures (900 and 975°C) and soaked for 1 h and then quenched in a salt bath at 325°C for 0 to 10 h. Samples were analyzed using optical microscopy and X-ray diffraction. Wear tests were carried out on a pin-on-disk-type machine. The effect of austenization temperature on the wear resistance, impact strength, and the microstructure was evaluated. A structure–property correlation based on the observations is established.

Keywords

low carbon equivalent ductile iron (LCEDI) / carbidic austempered ductile iron (CADI) / wear test / austenitization temperature / impact strength

Cite this article

Download citation ▾
Vinayak Dakre, D. R. Peshwe, S. U. Pathak, Ajay Likhite. Effect of austenitization temperature on microstructure and mechanical properties of low-carbon-equivalent carbidic austempered ductile iron. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(7): 770-778 DOI:10.1007/s12613-018-1625-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tanaka Y., Kage H. Development and application of austempered spheroidal graphite cast iron. Mater. Trans. JIM, 1992, 33(6): 543.

[2]

Lerner Y.S., Kingsbury G.R. Wear resistance properties of austempered ductile iron. J. Mater. Eng. Perform., 1998, 7(1): 48.

[3]

Shanmugam P., Rao P.P., Udupa K.R., Venkataraman N. Effect of microstructure on the fatigue strength of an austempered ductile iron. J. Mater. Sci., 1994, 29(18): 4933.

[4]

Bartosiewicz L., Krause A.R., Alberts F.A., Singh I., Putatunda S.K. Influence of microstructure on high cycle fatigue behavior of austempered ductile cast iron. Mater. Charact., 1993, 30(4): 221.

[5]

Garin J.L., Mannheim R.L. Strain-induced martensite in ADI alloys. J. Mater. Process. Technol., 2003, 143-144, 347.

[6]

Balos S., Radisavljevic I., Rajnovic D., Dramicanin M., Tabakovic S., Eric-Cekic O., Sidjanin L. Geometry, mechanical and ballistic properties of ADI material perforated plates. Mater. Des., 2015, 83, 66.

[7]

Dommarco R.C., Kozaczek K.J., Bastias P.C., Hahn G.T., Rubin C.A. Residual stresses and retained austenite evolution in SAE 52100 steel under non-ideal rolling contact loading. Wear, 2004, 257(11): 1081.

[8]

Zimba J., Simbi D.J., Navara E. Austempered ductile iron: an alternative material for earth moving components. Cem. Concr. Compos., 2003, 25(6): 643.

[9]

Fang L.Y., Loper Jr C.R. Feasibility of the production of a low-cabon equivalent spheroidal graphite cast iron: a review of the literature. Am. Foundry Soc. Trans., 1991 313.

[10]

Likhite A., Peshwe D.R., Pathak S.U. Effect of graphite morphology on modulus of elasticity of low carbon equivalent ductile iron. Trans. Indian Inst. Met., 2008, 61(6): 497.

[11]

Parhad P., Umale S., Likhite A., Bhatt J. Characterization of inoculated low carbon equivalent iron at lower austempering temperature. Trans. Indian Inst. Met., 2012, 65(5): 449.

[12]

Likhite A., Peshwe D.R., Pathak S.U. Development of austempered inoculated low carbon equivalent irons. Indian Foundry J., 2011, 57(6): 23.

[13]

Umale S., Likhite A., Peshwe D.R., Pathak S.U. Wear characteristics of low carbon equivalent austempered ductile iron (ADI). Indian Foundry J., 2014, 60(9): 28.

[14]

Hayrynen K.L., Brandenberg K.R. Carbidic austempered ductile iron (CADI)—the new wear material. Am. Foundry Soc. Trans., 2003, 111, 845.

[15]

Liu J.H., Li G.L., Zhao X.B., Hao X.Y., Zhang J.J. Effect of austempering temperature on microstructure and properties of carbidic austempered ductile iron. Adv. Mater. Res., 2011, 284-286, 1085.

[16]

Laino S., Sikora J.A., Dommarco R.C. Development of wear resistant carbidic austempered ductile iron (CADI). Wear, 2008, 265(1-2): 1.

[17]

Bartosiewicz L., Singh I., Alberts F.A., Krause A.R., Putatunda S.K. The influence of chromium on mechanical properties of austempered ductile cast iron. J. Mater. Eng. Perform., 1995, 4(1): 90.

[18]

Suryanarayana C., Grant Norton M. Plenum Press, New York and London. X-ray Diffraction: A Practical Approach, 1998 153.

[19]

Roberts C.S. Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite. JOM, 1953, 5(2): 203.

[20]

Cullity B.D. Elements of X-Ray Diffraction, 1978, USA, Addison- Wesley, Reading 102.

[21]

Parhad P., Likhite A., Bhatt J., Peshwe D. The effect of cutting speed and depth of cut on surface roughness during machining of austempered ductile iron. Trans. Indian Inst. Met., 2015, 68(1): 99.

[22]

Pierson H.O. Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications, William Andrew, 1996 139.

[23]

Rouns T.N., Rundman K.B. Constitution of austempered ductile iron and the kinetics of austempering. Am. Foundry Soc. Trans., 1987, 95, 851.

[24]

Elliott R. Cast Iron Technology, 1988, Oxford, Butterworth-Heinemann 142.

[25]

Hsu C.H., Lee S.C. High strength high toughness compacted graphite cast iron. Mater. Sci. Technol., 1995, 11, 765.

[26]

Batra U., Ray S., Prabhakar S.R. Impact properties of copper-alloyed and nickel-copper alloyed ADI. J. Mater. Eng. Perform., 2007, 16(4): 485.

[27]

Kumari U.R., Rao P.P. Study of wear behaviour of austempered ductile iron. J. Mater. Sci., 2009, 44, 1082.

[28]

Yang J.H., Putatunda S.K. Effect of microstructure on abrasion wear behavior of austempered ductile cast iron (ADI) processed by a novel two-step austempering process. Mater. Sci. Eng, A, 2005, 406(1-2): 217.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/