Up-grading of natural ilmenite ore by combining oxidation and acid leaching

Takehito Hiraki , Yuichi Maruyama , Yuta Suzuki , Satoshi Itoh , Tetsuya Nagasaka

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (7) : 729 -736.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (7) : 729 -736. DOI: 10.1007/s12613-018-1620-9
Article

Up-grading of natural ilmenite ore by combining oxidation and acid leaching

Author information +
History +
PDF

Abstract

Rutile (TiO2) is heavily used in pigments and colorants, and the most abundant source of rutile is ilmenite. Upon oxidation of ilmenite, rutile can be formed with modest energy consumption; furthermore, after leaching, only a few byproducts are formed. Unfortunately, one drawback is the necessarily long oxidative process of typically used methods. In this study, we show that a fluidized bed reactor can be used to oxidize ilmenite ore to rapidly form rutile and pseudobrookite (Fe2TiO5) phases. Ilmenite was oxidized with 5vol% O2 in Ar at temperatures of 1173 K or 1223 K and subsequently leached using a diluted H2SO4 solution to dissolve the pseudobrookite phase. The effects of acid concentration, temperature, and cooling rate after oxidation were investigated. We show that the ilmenite was rapidly oxidized to form rutile and pseudobrookite phases at 1173 and 1223 K in a 5vol% O2/95vol% Ar environment within 40 min. The final maximum rutile yield was 84.2mol% after leaching in (1 + 1) H2SO4 solution at 393 K for 12 h.

Keywords

ilmenite / oxidation / fluidized bed reactor / acid leaching / rutile / pseudobrookite

Cite this article

Download citation ▾
Takehito Hiraki, Yuichi Maruyama, Yuta Suzuki, Satoshi Itoh, Tetsuya Nagasaka. Up-grading of natural ilmenite ore by combining oxidation and acid leaching. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(7): 729-736 DOI:10.1007/s12613-018-1620-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

U.S. Geological Survey, Mineral Commodity Summaries 2017, U.S. Geological Survey, Reston, Virginia, 2017.

[2]

Pourabdoli M., Raygan S., Abdizadeh H., Hanaei K. Production of high titania slag by electro-slag crucible melting (ESCM) process. Int. J. Miner. Process., 2006, 78(3): 175.

[3]

Sahu K.K., Alex T.C., Mishra D., Agrawal A. An overview on the production of pigment grade titania from titania- rich slag. Waste Manage. Res., 2006, 24(1): 74.

[4]

Filippou D., Hudon G. Iron removal and recovery in the titanium dioxide feedstock and pigment industries. JOM, 2009, 61(10): 36.

[5]

Samal S., Mukherjee P.S., Ray A.K. Comparative study on energy consumption and yield by various thermal plasma routes for production of titania slag. Plasma Chem. Plasma Process., 2010, 30(3): 413.

[6]

Gázquez M.J., Bolívar J.P., Garcia-Tenorio R., Vaca F. A review of the production cycle of titanium dioxide pigment. Mater. Sci. Appl., 2014, 5(7): 441.

[7]

Middlemas S., Fang Z.Z., Fan P. Life cycle assessment comparison of emerging and traditional titanium dioxide manufacturing processes. J. Cleaner Prod., 2015, 89, 137.

[8]

Zietsman J.H., Pistorius P.C. Process mechanisms in ilmenite smelting. J. South Afr. Inst. Min. Metall., 2005, 105(4): 229.

[9]

Murty C., Upadhyay R., Asokan S. Electro smelting of ilmenite for production of TiO2 slag - potential of India as a global player. Proceedings of INFACON XI, 2007 18.

[10]

Becher R.G., Canning R.G., Goodheart B.A., Uusna S. A new process for upgrading ilmenitic mineral sands. Proc. Aust. Inst. Miner. Metall., 1965, 21, 21.

[11]

Benilite Corp. of America, Beneficiation of titaniferous ores, U.S. Patent, Appl. 3825419, 1974.

[12]

Rao D.B., Rigaud M. Kinetics of the oxidation of ilmenite. Oxid. Met., 1975, 9(1): 99.

[13]

Gupta S.K., Rajakumar V., Grieveson P. Phase transformations during heating of ilmenite concentrates. Metall. Trans, B, 1991, 22(5): 711.

[14]

Zhang G.Q., Ostrovski O. Effect of peroxidation and sintering on properties of ilmenite concentrates. Int. J. Miner. Process., 2002, 64(4): 201.

[15]

Itoh S., Sato S., Ono J., Okada H., Nagasaka T. Feasibility study of the new rutile extraction process from natural ilmenite ore based on the oxidation reaction. Metall. Mater. Trans, B, 2006, 37(6): 979.

[16]

Vásquez R., Molina A. Effects of thermal peroxidation on reductive leaching of ilmenite. Miner. Eng., 2012, 39, 99.

[17]

Xiao W., Lu X.G., Zuo X.L., Wei X.M., Ding W.Z. Phase transitions, micro-morphology and its oxidation mechanism in oxidation of ilmenite (FeTiO3) powder. Trans. Nonferrous Met. Soc. China, 2013, 23(8): 2439.

[18]

Zhang J.B., Zhang G.Y., Zhu Q.S., Lei C., Xie Z.H., Li H.Z. Morphological changes and reduction mechanism for the weak reduction of the preoxidized Panzhihua ilmenite. Metall. Mater. Trans, B, 2014, 45(3): 914.

[19]

Chen Y. Low-temperature oxidation of ilmenite (FeTiO3) induced by high energy ball milling at room temperature. J. Alloys Compd., 1997, 257(1-2): 156.

[20]

Levenspiel O. Chemical Reaction Engineering, 1972, New York, Wiley 361.

[21]

Pritzker M.D. Shrinking-core model for systems with facile heterogeneous and homogeneous reactions. Chem. Eng. Sci., 1996, 51(14): 3631.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/