Mechanisms of reactive element Y on the purification of K4169 superalloy during vacuum induction melting

Qing-ling Li , Hua-rui Zhang , Ming Gao , Jin-peng Li , Tong-xiao Tao , Hu Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (6) : 696 -703.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (6) : 696 -703. DOI: 10.1007/s12613-018-1617-4
Article

Mechanisms of reactive element Y on the purification of K4169 superalloy during vacuum induction melting

Author information +
History +
PDF

Abstract

The effects of rare earth element Y on the purification of K4169 superalloy during vacuum induction melting were investigated at different superheating temperatures. The corresponding interaction mechanisms were also clarified. Results showed that the addition of Y remarkably promoted the purification effect on the K4169 melt. The contents of O and S in the K4169 as-cast alloy ingots after purification were 3–4 and 8–10 ppm, respectively. The degrees of deoxidation and desulfurization increased to 50% and 57%, respectively, upon the addition of 0.1wt% Y. The yttrium-rich phase that precipitated at the grain boundary blocked the diffusion of C and the accumulation of S, thereby contributing to the purification of the alloy.

Keywords

K4169 superalloy / deoxidation / desulfurization / yttrium / vacuum induction melting / mechanism

Cite this article

Download citation ▾
Qing-ling Li, Hua-rui Zhang, Ming Gao, Jin-peng Li, Tong-xiao Tao, Hu Zhang. Mechanisms of reactive element Y on the purification of K4169 superalloy during vacuum induction melting. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(6): 696-703 DOI:10.1007/s12613-018-1617-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iturbe A., Giraud E., Hormaetxe E., Garay A., Germain G., Ostolaza K., Arrazola P.J. Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment. Mater. Sci. Eng. A, 2017, 682, 441.

[2]

Ping D.H., Gu Y.F., Cui C.Y., Harada H. Grain boundary segregation in a Ni-Fe-based (Alloy 718) superalloy. Mater. Sci. Eng. A, 2007, 456(1-2): 99.

[3]

Zickler G.A., Schnitzer R., Radis R., Hochfellner R., Schweins R., Stockinger M., Leitner H. Microstructure and mechanical properties of the superalloy ATI Allvac® 718Plus™. Mater. Sci. Eng. A, 2009, 523(1-2): 295.

[4]

Das D.K., Singh V., Joshi S.V. High temperature oxidation behaviour of directionally solidified nickel base superalloy CM-247LC. Mater. Sci. Technol., 2013, 19(6): 695.

[5]

Caldwell E.C., Fela F.J., Fuchs G.E. The segregation of elements in high refactory-content single-crystal nickel-based superalloys. JOM, 2004, 56(9): 44.

[6]

Brand A.J., Karhausen K., Kopp R. Microstructural simulation of nickel base alloy Incone* 718 in production of turbine discs. Mater. Sci. Technol., 1996, 12(11): 963.

[7]

Pollock T.M., Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propul. Power, 2006, 22(2): 361.

[8]

Sidorov V.V., Rigin V.E., Min P.G., Folomeikin Y.I. Removal of a sulfur impurity from complex nickel melts in vacuum. Russ. Metall., 2015, 2015(11): 910.

[9]

Naffakh-Moosavy H. Microstructural evolution and castability prediction in newly designed modern third-generation nickel-based superalloys. Int. J. Miner. Metall. Mater., 2016, 23(5): 548.

[10]

Wang L., Wang Y., Liu Y., Song X., X.D., Zhang B.J. Coarsening behavior of γ′ and γ″ phases in GH4169 superalloy by electric field treatment. Int. J. Miner. Metall. Mater., 2013, 20(9): 861.

[11]

Yu W.X., Niu J.P. Deoxidation and denitrogenation during VIM^refining Ni-base superalloy. New Technol. New Process, 2002, 3, 32.

[12]

Miller C.F., Simmons G.W., Wei R.P. Mechanism for oxygen enhanced crack growth in inconel 718. Scripta Mater., 2001, 44(10): 2405.

[13]

Sadananda K., Shahinian P. The effect of environment on the creep crack growth behavior several structural alloys. Mater. Sci. Eng., 1980, 43(2): 159.

[14]

Sarioglu C., Stinner C., Blachere J.R., Birks N., Pettit F.S., Meier G.H., Smialek J.L. The control of sulfur content in nickel-base, single crystal superalloys and its effects on cyclic oxidation resistance. Superalloys, 1996 71.

[15]

Simpson T.M., Price A.R. Oxidation improvements of low sulfur processed superalloys. Superalloys, 2000 387.

[16]

Dong J.X., Liu X.B., Tang B., Hu Y.H., Xu Z.C., Xie X.S. Effects of S on mechanical properties and microstructure of Inconel 718 alloy. Acta Metall. Sin., 1996, 32(3): 241.

[17]

Ramanathan L.V. Role of rare-earth elements on high temperature oxidation behavior of FeCr, NiCr and NiCrAl alloys. Corros. Sci., 1993, 35(5-8): 871.

[18]

Nayan N., ·Govind Saikrishna C.N., Ramaiah K.V., Bhaumik S.K., Nair K.S., Mittal M.C. Vacuum induction melting of NiTi shape memory alloys in graphite crucible. Mater. Sci. Eng. A, 2007, 465(1-2): 44.

[19]

Cheng X.H., Fan L., Li L., Du K.F., Wang D.H. Effect of doping aluminum and yttrium on high-temperature oxidation behavior of Ni-11Fe-10Cu alloy. J. Rare Earths, 2016, 34(11): 1139.

[20]

Li X.L., He S.M., Zhou X.T., Zou Y., Li Z.J., Li A.G., Yu X.H. Effects of rare earth yttrium on microstructure and properties of Ni-16Mo-7Cr-4Fe nickel-based superalloy. Mater. Charact., 2014, 95, 171.

[21]

Zhou P.J., Yu J.J., Sun X.F., Guan H.R., He X.M., Hu Z.Q. Influence of Y on stress rupture property of a Ni-based superalloy. Mater. Sci. Eng. A, 2012, 551, 236.

[22]

Song L.G., Li S.S., Zheng Y.R., Han Y.F. Effect of yttrium on high temperature oxidation resistance of a directionally solidified superalloy. J. Rare Earths, 2004, 22(6): 794.

[23]

Bai H.B., Zhang H.R., Weng J.F., Kong B., Zhang H. Purification behaviour of GH4169 scraps under argon atmosphere during vacuum induction melting. Mater. Res. Innovations, 2014, 18(S4): 357.

[24]

Zhang H.R., Tang X.X., Zhou C.G., Zhang H., Zhang S.W. Comparison of directional solidification of γ-TiAl alloys in conventional Al2O3 and novel Y2O3-coated Al2O3 crucibles. J. Eur. Ceram. Soc., 2013, 33(5): 925.

[25]

Li S.J., Hu Y.H., Mei H.S., Xie X.S., He Y.H., Zhang H.B. Desulphurization of Ni-base superalloy GH690. J. Iron Steel Res., 2003, 15(7): 317.

[26]

Zhao L.H., Zheng X.M., Fei J.H. Surface properties of rare earth oxide solid-base catalysts. Characterization of surface active sites of rare earth oxide calalysts. Chin. J. Catal., 1996, 17(3): 227.

[27]

Sun C., Huang R.F., Guo J.T., Hu Z.Q. Sulphur distribution in K24 cast nickel-base superalloy and its influence on mechanical properties. High Temp. Technol., 1988, 6(3): 145.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/