Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation

Ying Yan , Li-jia Chen , Guo-qiang Zhang , Dong Han , Xiao-wu Li

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (6) : 663 -671.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (6) : 663 -671. DOI: 10.1007/s12613-018-1613-8
Article

Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation

Author information +
History +
PDF

Abstract

To explore the influence of cyclic pre-deformation on the mechanical behavior of ultrafine-grained (UFG) materials with a high stacking fault energy (SFE), UFG Al processed by equal-channel angular pressing (ECAP) was selected as a target material and its tensile behavior at different pre-cyclic levels D (D = N i / N f, where N i and N f are the applied cycles and fatigue life at a constant stress amplitude of 50 MPa, respectively) along with the corresponding microstructures and deformation features were systematically studied. The cyclic pre-deformation treatment on the ECAPed UFG Al led to a decrease in flow stress, and a stress quasi-plateau stage was observed after yielding for all of the different-state UFG Al samples. The yield strength σ YS, ultimate tensile strength σ UTS, and uniform strain ɛ exhibited a strong dependence on D when D ≤ 20%; however, when D was in the range from 20% to 50%, no obvious change in mechanical properties was observed. The micro-mechanism for the effect of cyclic pre-deformation on the tensile properties of the ECAPed UFG Al was revealed and compared with that of ECAPed UFG Cu through the observations of deformation features and microstructures.

Keywords

ultrafine-grained aluminum / cyclic pre-deformation / tensile property / microstructure / deformation mechanism

Cite this article

Download citation ▾
Ying Yan, Li-jia Chen, Guo-qiang Zhang, Dong Han, Xiao-wu Li. Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(6): 663-671 DOI:10.1007/s12613-018-1613-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ye D.Y., Xu Y.D., Xiao L., Cha H.B. Effects of low-cycle fatigue on static mechanical properties, microstructures and fracture behavior of 304 stainless steel. Mater. Sci. Eng. A, 2010, 527(16-17): 4092.

[2]

Yan Y., Lu M., Li X.W. Effects of pre-fatigue deformation on the uniaxial tensile behavior of coarse-grained pure Al. Acta Metall. Sin., 2013, 49(6): 658.

[3]

Sánchez-Santana U., Rubio-González C., Mesmacque G., Amrouche A. Effect of fatigue damage on the dynamic tensile behavior of 6061-T6 aluminum alloy and AISI 4140T steel. Int. J. Fatigue, 2009, 31(11-12): 1928.

[4]

Sánchez-Santana U., Rubio-González C., Mesmacque G., Amrouche A., Decoopman X. Effect of fatigue damage induced by cyclic plasticity on the dynamic tensile behavior of materials. Int. J.^Fatigue, 2008, 30(10-11): 1708.

[5]

Sánchez-Santana U., Rubio-González C., Mesmacque G., Amrouche A., Decoopman X. Dynamic tensile behavior of materilas with previous fatigue damage. Mater. Sci. Eng. A, 2008, 497(1-2): 51.

[6]

Mariappan K., Shankar V., Sandhya R., Mathew M.D., Bhaduri A.K. Influence of prior fatigue damage on tensile properties of 316L(N) stainless steel and modified 9Cr-1Mo steel. Metall. Mater. Trans. A, 2015, 46(2): 989.

[7]

Galán López J., Verleysen P., De Baere I., Degrieck J. Tensile properties of thin-sheet metals after cyclic damage. Procedia Eng., 2011, 10, 1961.

[8]

Froustey C., Lataillade J.L. Influence of the microstructure of aluminium alloys on their residual impact properties after a fatigue loading program. Mater. Sci. Eng. A, 2009, 500(1-2): 155.

[9]

Huang C.X., Wu S.D., Li G.Y., Liu T., Jiang C.B., Li S.X. Effect of cyclic deformation on room temperature tensile behaviors of ultrafine grained copper. Acta Metall. Sin., 2004, 40(11): 1165.

[10]

Molodova X., Gottstein G., Winning M., Hellmig R.J. Thermal stability of ECAP^processed pure copper. Mater. Sci. Eng. A, 2007, 460-461, 204.

[11]

Cao W.Q., Gu C.F., Pereloma E.V., Davies C.H.J. Stored energy, vacancies and thermal stability of ultra-fine grained copper. Mater. Sci. Eng. A, 2008, 492(1-2): 74.

[12]

Mishra A., Martin M., Thadhani N.N., Kad B.K., Kenik E.A., Meyers M.A. High-strain-rate response of ultra-fine-grained copper. Acta Mater., 2008, 56(12): 2770.

[13]

Kanta P.L.M., Srivastava V.C., Venkateswarlu K., Paswan S., Mahato B., Das G., Sivaprasad K., Krishna K.G. Corrosion behavior of ultrafine-grained AA2024 aluminum alloy produced by cryorolling. Int. J. Miner. Metall. Mater., 2017, 24(11): 1293.

[14]

Li X.W., Umakoshi Y., Wu S.D., Wang Z.G., Alexandrov I.V., Valiev R.Z. Temperature effects on the fatigue behavior of ultrafine-grained copper produced by equal channel angular pressing. Phys. Status Solidi A, 2004, 201(15): 119.

[15]

Yu Z.Y., Jiang Q.W., Li X.W. Temperature-dependent deformation and damage behavior of ultrafine-grained copper under uniaxial compression. Phys. Status Solidi A, 2008, 205(10): 2417.

[16]

Long F.W., Jiang Q.W., Xiao L., Li X.W. Compressive deformation behaviors of coarse-and ultrafine-grained pure titanium at different temperatures: A comparative study. Mater. Trans., 2011, 52(8): 1617.

[17]

Jiang Q.W., Liu Y., Wang Y., Chao Y.S., Li X.W. Microstructural instability of ultrafine-grained copper under annealing and high-temperature deforming. Acta Metall. Sin., 2009, 45(7): 873.

[18]

Li X.W., Jiang Q.W., Liu Y., Wang Y. Effect of strain rate on the high-temperature compressive deformation behavior of ultrafine-grained copper. Inter. J. Mod. Phys. B, 2009, 23(6-7): 1758.

[19]

Valiev R.Z., Alexandrov I.V., Zhu Y.T., Lowe T.C. Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res., 2002, 17(1): 5.

[20]

Mughrabi H., Höppel H.W., Kautz M., Valiev R.Z. Annealing treatment to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation. Z. Metallkd., 2003, 94(10): 1079.

[21]

Kamikawa N., Huang X.X., Tsuji N., Hansen N. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater., 2009, 57(14): 4198.

[22]

Vinogradov A., Kaneko Y., Kitagawa K., Hashimoto S., Stolyarov V., Valiev R. Cyclic response of ultrafine-grained copper at constant plastic strain amplitude. Scripta Mater., 1997, 36(11): 1345.

[23]

Huang X.X., Hansen N., Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals. Science, 2006, 312(5771): 249.

[24]

Han W.Z., Wu S.D., Li S.X., Wang Y.D. Intermediate annealing of pure copper during cyclic equal channel angular pressing. Mater. Sci. Eng. A, 2008, 483-484, 430.

[25]

Valiev R.Z., Sergueeva A.V., Mukherjee A.K. The effect of annealing on tensile deformation behavior of nanostructured SPD titanium. Scripta Mater., 2003, 49(7): 669.

[26]

Jiang Q.W., Li X.W. Effect of pre-annealing treatment on the compressive deformation and damage behavior of ultrafine-grained copper. Mater. Sci. Eng. A, 2012, 546(1): 59.

[27]

Suresh S. Fatigue of Materials, 1998 96.

[28]

Zhang Z.J., Zhang P., Li L.L., Zhang Z.F. Fatigue cracking at twin boundaries: Effects of crystallographic orientation and stacking fault energy. Acta Mater., 2012, 60(6-7): 3113.

[29]

Yan Y., Lu M., Guo W.W., Li X.W. Effect of pre-fatigue deformation on thickness-dependent tensile behavior of coarse-grained pure aluminum sheets. Mater. Sci. Eng. A, 2014, 600(4): 99.

[30]

Li X.W., Wang X.M., Guo W.W., Qi C.J., Yan Y. Effect of cyclic predeformation on the uniaxial tensile deformation behavior of [017] Cu single crystals oriented for critical double slip. Metall. Mater. Trans. A, 2013, 44(4): 1631.

[31]

Xu J., Li J.W., Shi L., Shan D.B., Guo B. Effects of temperature, strain rate and specimen size on the deformation behaviors at micro/meso-scale in ultrafine-grained pure Al. Mater. Charact., 2015, 109(11): 181.

[32]

Xu J., Zhu X.C., Shan D.B., Guo B., Langdon T.G. Effect of grain size and specimen dimensions on micro-forming of high purity aluminum. Mater. Sci. Eng. A, 2015, 646(14): 207.

[33]

Jia D., Wang Y.M., Ramesh K.T., Ma E., Zhu Y.T., Valiev R.Z. Deformation behavior and plastic instabilities of ultrafine-grained titanium. Appl. Phys. Lett., 2001, 79(5): 611.

[34]

Valiev R.Z., Kozlov E.V., Ivanov Y.F., Lian J., Nazarov A.A., Baudelet B. Deformation behavior of ultra-fine-grained copper. Acta Metall. Mater., 1994, 42(7): 2467.

[35]

Valiev R.Z. Approach to nanostructured solids through the studies of submicron grained polycrystals. Nanostruct. Mater., 1995, 6(1-4): 73.

[36]

Valiev R.Z. Structure and mechanical properties of ultrafine-grained metals. Mater. Sci. Eng. A, 1997, 234-236, 59.

[37]

Vinogradov A., Hashimoto S. Multiscale phenomena in fatigue of ultra-fine grain materials—an overview. Mater. Trans., 2001, 42(1): 74.

[38]

Malekjani S., Hodgson P.D., Stanford N.E., Hilditch T.B. The role of shear banding on the fatigue ductility of ultrafine-grained aluminium. Scripta Mater., 2013, 68(5): 269.

[39]

Li J.W., Xu J., Guo B., Shan D.B., Langdon T.G. Shear fracture mechanism in micro-tension of an ultrafine-grained pure copper using synchrotron radiation X-ray tomography. Scripta Mater., 2017, 132(15): 25.

[40]

Sabirov I., Barnett M.R., Estrin Y., Hodgson P.D. The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy. Scripta Mater., 2009, 61(2): 181.

[41]

Kunz L., Lukáš P., Svoboda M. Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper. Mater. Sci. Eng. A, 2006, 424(1-2): 97.

[42]

Cao W.Q., Dirras G.F., Benyoucef M., Bacroix B. Room temperature deformation mechanisms in ultrafine-grained materials processed by hot isostatic pressing. Mater. Sci. Eng. A, 2007, 462(1-2): 100.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/