Effects of Ni content on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys

Shuang-jiang He , Yan-bin Jiang , Jian-xin Xie , Yong-hua Li , Li-juan Yue

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (6) : 641 -651.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (6) : 641 -651. DOI: 10.1007/s12613-018-1611-x
Article

Effects of Ni content on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys

Author information +
History +
PDF

Abstract

The effects of Ni content (0–2.1wt%) on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys were investigated, and the corresponding mechanisms of influence were analyzed. The results show that the amount of precipitated phase increases in the cast alloys with increasing Ni content. When the Ni content is 0.45wt% or 0.98wt%, needle-like Be21Ni5 phases form in the grains and are mainly distributed in the interdendritic regions. When the Ni content is 1.5wt% or greater, a large number of needle-like precipitates form in the grains and chain-like Be21Ni5 and BeNi precipitates form along the grain boundaries. The addition of Ni can substantially refine the cast and solid-solution microstructures of Cu-0.4wt%Be alloys. The hindering effects of both the dissolution of Ni into the matrix and the formation of Be–Ni precipitates on grain-boundary migration are mainly responsible for refining the cast and solid-solution microstructures of Cu-0.4wt%Be alloys. Higher Ni contents result in finer microstructures; however, given the precipitation characteristics of Be–Ni phases and their dissolution into the matrix during the solid-solution treatment, the upper limit of the Ni content is 1.5wt%–2.1wt%.

Keywords

beryllium–copper alloys / alloying / Ni content / microstructure / solid-solution treatment

Cite this article

Download citation ▾
Shuang-jiang He, Yan-bin Jiang, Jian-xin Xie, Yong-hua Li, Li-juan Yue. Effects of Ni content on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(6): 641-651 DOI:10.1007/s12613-018-1611-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang W. Production status and application prospect of beryllium copper alloy. Nonferrous Met. Process., 2014, 43(2): 9.

[2]

Murty Y.V. Electrical and electronic connectors: materials and technology. Encycl. Mater. Sci. Technol., 2001 2483.

[3]

Behjati P., Vahid Dastjerdi H., Mahdavi R. Influence of ageing process on sound velocity in C17200 copper -beryllium alloy. J. Alloys Compd., 2010, 505(2): 739.

[4]

Yagmur L. Effect of microstructure on internal friction and Young’s modulus of aged Cu-Be alloy. Mater. Sci. Eng. A, 2009, 523(1-2): 65.

[5]

Pang J.C., Duan Q.Q., Wu S.D., Li S.X., Zhang Z.F. Fatigue strengths of Cu-Be alloy with high tensile strengths. Scripta Mater., 2010, 63(11): 1085.

[6]

Argibay N., Bares J.A., Keith J.H., Bourne G.R., Sawyer W.G. Copper-beryllium metal fiber brushes in high current density sliding electrical contacts. Wear, 2010, 268(11-12): 1230.

[7]

Xie G.L., Wang Q.S., Mi X.J., Xiong B.Q., Peng L.J. The precipitation behavior and strengthening of a Cu-2.0wt% Be alloy. Mater. Sci. Eng. A, 2012, 558, 326.

[8]

Zhu D.B., Liu C.M., Han T., Liu Y.D., Xie H.P. Effects of secondary β and γ phases on the work function properties of Cu-Be alloys. Appl. Phys. A, 2015, 120(3): 1023.

[9]

Yagmur L., Duygulu O., Aydemir B. Investigation of metastable γ’ precipitate using HRTEM in aged Cu-Be alloy. Mater. Sci. Eng. A, 2012, 528(12): 4147.

[10]

Monzen R., Watanabe C., Mino D., Saida S. Initiation and growth of the discontinuous precipitation reaction at [011] symmetric tilt boundaries in Cu-Be alloy bicrystals. Acta Mater., 2005, 53(4): 1253.

[11]

Rotem A., Shechtman D., Rosen A. Correlation among microstructure, strength, and electrical conductivity of Cu-Ni-Be alloy. Mater. Trans. A, 1988, 19(9): 2279.

[12]

Monzen R., Hosoda T., Takagawa Y., Watanabe C. Bend formability and strength of Cu-Be-Co alloys. J. Mater. Sci., 2011, 46(12): 4284.

[13]

Tang Y.C., Zhu G.M., Kang Y.L., Yue L.J., Jiao X.L. Effect of microstructure on the fatigue crack growth behavior of Cu-Be-Co-Ni alloy. J. Alloys Compd., 2016, 663, 784.

[14]

Tang Y.C., Kang Y.L., Yue L.J., Jiao X.L. Mechanical properties optimization of a Cu-Be-Co-Ni alloy by precipitation design. J. Alloys Compd., 2017, 695, 613.

[15]

Zinkle S.J. Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications. J. Nucl. Mater., 2014, 449(1-3): 277.

[16]

Spaić S., Markoli B. Microstructural characterization of alloys of the quasibinary Cu-NiBe system. Z. Metallkd., 2003, 94(8): 876.

[17]

Liu C.M., Li H.Z., Han T. Phase Diagrams of Copper Alloy, 2011, Changsha, Central South University Press 9.

[18]

Humphreys F.J., Hatherly M. Recrystallization and Related Annealing Phenomena, 2004, England, Pergamon Press 209.

[19]

Peng L.J., Xiong B.Q., Xie G.L., Wang Q.S., Hong S.B. Precipitation process and its effects on properties of aging Cu-Ni-Be alloy. Rare Met., 2013, 32(4): 332.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/