Microstructure and phase composition of hypoeutectic Te–Bi alloy as evaporation source for photoelectric cathode

Bao-guang Wang , Wen-hui Yang , Hong-ye Gao , Wen-huai Tian

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (5) : 584 -590.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (5) : 584 -590. DOI: 10.1007/s12613-018-1605-8
Article

Microstructure and phase composition of hypoeutectic Te–Bi alloy as evaporation source for photoelectric cathode

Author information +
History +
PDF

Abstract

A hypoeutectic 60Te–40Bi alloy in mass percent was designed as a tellurium atom evaporation source instead of pure tellurium for an ultraviolet detection photocathode. The alloy was prepared by slow solidification at about 10−2 K·s−1. The microstructure, crystal structure, chemical composition, and crystallographic orientation of each phase in the as-prepared alloy were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The experimental results suggest that the as-prepared 60Te–40Bi alloy consists of primary Bi2Te3 and eutectic Bi2Te3/Te phases. The primary Bi2Te3 phase has the characteristics of faceted growth. The eutectic Bi2Te3 phase is encased by the eutectic Te phase in the eutectic structure. The purity of the eutectic Te phase reaches 100wt% owing to the slow solidification. In the eutectic phases, the crystallographic orientation relationship between Bi2Te3 and Te is confirmed as ${[0001]_{B{i_2}T{e_3}}}//{[1\bar 21\bar 3]_{Te}}$ and the direction of Te phase parallel to ${[11\bar 20]_{B{i_2}T{e_3}}}$ is deviated by 18° from Te $N{(2\bar 1\bar 11)_{Te}}$.

Keywords

Te–Bi alloy / microstructure / orientation / misfit

Cite this article

Download citation ▾
Bao-guang Wang, Wen-hui Yang, Hong-ye Gao, Wen-huai Tian. Microstructure and phase composition of hypoeutectic Te–Bi alloy as evaporation source for photoelectric cathode. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(5): 584-590 DOI:10.1007/s12613-018-1605-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rathod J.R., Patel H.S., Patel K.D., Pathak V.M. Structural and optical characterization of zinc telluride thin films. Adv. Mater. Res., 2013, 665, 254.

[2]

Yang R., Jie W.Q., Liu H. Characterization and chemical surface texturization of bulk ZnTe crystals grown by temperature gradient solution growth. Int. J.^Miner. Metall. Mater., 2015, 22(7): 755.

[3]

C.Y. Lu, X.M. Li, L.B. Tang, S.K. Lai, L. Rogée, K.S. Teng, F.L. Qian, L.L. Zhou, and S.P. Lau, Tellurium quantum dots: Preparation and optical properties, Appl. Phys. Lett., 111(2017), No. 6, art. No. 063112.

[4]

Loch R.A. Cesium–Telluride and Magnesium for High Quality Photocathodes [Dissertation], 2005

[5]

Appl. phys. Lett., 2017, 111(3)

[6]

Wang H.G., Zhou W.J., Li H.G., Yue J., Zhang E.Z., Wang Y., Chang X.H. Effective evaluation of the noise characteristics of solar-blind Cs2Te ultraviolet image intensifiers. Optik, 2017, 143, 14.

[7]

J. Vac. Sci. Technol. B, 2017, 35(6)

[8]

Z. Yusof, A. Denchfield, M. Warren, J. Cardenas, N. Samuelson, L. Spentzouris, J. Power, and J. Zasadzinski, Photocathode quantum efficiency of ultra-thin Cs2Te layers on Nb substrates, Phys. Rev. Accel. Beams, 20(2017), No. 12, art. No. 123401

[9]

S. Cui, C. Boussard-plédel, L. Calvez, F. Rojas, K. Chen, H. Ning, M.J. Reece, T. Guizouarn, and B. Bureau, Comprehensive study of tellurium based glass ceramics for thermoelectric application, Adv. Appl. Ceram., 114(2015), Suppl. 1, p. S42.

[10]

Poindexter E., Schultz L. Ultraviolet-visible spectroscopic investigation of reaction of rubidium and tellurium in liquid ammonia solution. Spectrosc. Lett., 2013, 46(4): 264.

[11]

Wei Y.L., Zhao B.S., Sai X.F., Liu Y.A., Cao X.B. Development of cesium telluride UV cathode with high quantum efficiency and solar-blind characteristics. Chin. J. Vac. Sci. Technol., 2012, 32(7): 555.

[12]

Sommer A.H. Spectrally selective (solar blind) UV photomultipliers with fluoride windows. Rev. Sci. Instrum., 1961, 32(3): 356.

[13]

Hu J.W., Wang B.G., Wang C.Y., Tian W.H. Microstructure and composition of Te–In alloy prepared by near-rapid solidification process. J. Funct. Mater., 2015, 46(3): 21001.

[14]

Wang B.G., Hu J.W., Wang C.Y., Yang W.H., Tian W.H. The microstructure and composition of equilibrium phases formed in hypoeutectic Te–In alloy during solidification. Mater. Charact., 2017, 125, 46.

[15]

Dai Y.N. Binary Alloy Phase Diagrams, 2009

[16]

Honig R.E., Kramer D.A. Vapor pressure data for the solid and liquid elements. RCA Rev., 1969, 30(2): 285.

[17]

Wu X.P., Yuan L., Zhou S.M., Lou S.Y., Wang Y.Q., Gao T., Liu Y.B., Shi X.J. Controlled synthesis of multi-morphology Te crystals by a convenient Lewis acid/base-assisted solvothermal method. J.^Nanopart. Res., 2012, 14(8): 1.

[18]

Rashad M.M., El-Dissouky A., Soliman H.M., Elseman A.M., Refaat H.M., Ebrahim A. Structure evaluation of bismuth telluride (Bi2Te3) nanoparticles with enhanced Seebeck coefficient and low thermal conductivity. Mater. Res. Innovations, 2017

[19]

Croker M.N., Fidler R.S., Smith R.W. The characterization of eutectic structures. Proc. R.^Soc. Lond. A, 1973, 335(1600): 15.

[20]

Gorbachuk N.P., Sidorko V.R. Heat capacity and enthalpy of Bi2Si3 and Bi2Te3 in the temperature range 58–1012 K. Powder Metall. Met. Ceram., 2004, 43(5-6): 284.

[21]

Makhlouf M.M., Guthy H.V. The aluminum–silicon eutectic reaction: mechanisms and crystallography. J. Light Met., 2001, 1(4): 199.

[22]

Bolling G.F. Some thermal data for Bi2Te3. J. Chem. Phys., 1960, 33(1): 305.

[23]

Zhao L.D., Zhang B.P., Li J.F., Zhang H.L., Liu W.S. Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci., 2008, 10(5): 651.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/