Effects of intermediate Ni layer on mechanical properties of Al–Cu layered composites fabricated through cold roll bonding

Ali Shabani , Mohammad Reza Toroghinejad , Alireza Bagheri

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (5) : 573 -583.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (5) : 573 -583. DOI: 10.1007/s12613-018-1604-9
Article

Effects of intermediate Ni layer on mechanical properties of Al–Cu layered composites fabricated through cold roll bonding

Author information +
History +
PDF

Abstract

Layered composites have attracted considerable interest in the recent literature on metal composites. Their mechanical properties depend on the quality of the bonding provided by the intermediate layers. In this study, we analyzed the mechanical properties and bond strengths provided by the nickel layer with respect to its thickness and nature (either powder or coating). The results suggest that bond strength decreases with an increase in the content of nickel powder. At 0.3vol% of nickel coating, we found the nature of nickel to be less efficient in terms of bond strength. A different picture arose when the content of nickel was increased and the bond strength increased in nickel coated samples. In addition, the results demonstrate that mechanical properties such as bend strength are strongly dependent on bond strength.

Keywords

cold roll bonding / Al/Ni/Cu composite / mechanical testing / metallography

Cite this article

Download citation ▾
Ali Shabani, Mohammad Reza Toroghinejad, Alireza Bagheri. Effects of intermediate Ni layer on mechanical properties of Al–Cu layered composites fabricated through cold roll bonding. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(5): 573-583 DOI:10.1007/s12613-018-1604-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shabani A., Toroghinejad M.R., Shafyei A. Fabrication of Al/Ni/Cu composite by accumulative roll bonding and electroplating processes and investigation of its microstructure and mechanical properties. Mater. Sci. Eng. A, 2012, 558, 386.

[2]

Jia N., Zhu M.W., Zheng Y.R., He T., Zhao X. Inhomogeneous deformation of multilayered roll-bonded brass/Cu composites. Acta Metall. Sin. Eng. Lett., 2015, 28(5): 600.

[3]

Noh S., Kasada R., Kimura A. Solid-state diffusion bonding of high-Cr ODS^ferritic steel. Acta Mater., 2011, 59(8): 3196.

[4]

Elrefaey A., Ross N.G. Microstructure and mechanical properties of cold metal transfer welding similar and dissimilar aluminum alloys. Acta Metall. Sin. Eng. Lett., 2015, 28(6): 715.

[5]

Akbari-Mousavi S.A.A., Barrett L.M., Al-Hassani S.T.S. Explosive welding of metal plates. J.^Mater. Process. Technol., 2008, 202(1-3): 224.

[6]

NabiRahni D.M.A., Tang P.T., Leisner P. The electrolytic plating of compositionally modulated alloys and laminated metal nano-structures based on an automated computer-controlled dual-bath system. Nanotechnology, 1996, 7(2): 134.

[7]

Pan D., Gao K., Yu J. Cold roll bonding of bimetallic sheet and strips. Mater. Sci. Technol., 1989, 5(9): 934.

[8]

Luo Z.A., Wang G.L., Xie G.M., Wang L.P., Zhao K. Interfacial microstructure and properties of a vacuum hot roll-bonded titanium-stainless steel clad plate with a niobium interlayer. Acta Metall. Sin. Eng. Lett., 2013, 26(6): 754.

[9]

Li L., Nagai K., Yin F.X. Progress in cold roll bonding of metals. Sci. Technol. Adv. Mater., 2008, 9(2): 023001.

[10]

Danesh Manesh H., Karimi Taheri A. Study of mechanisms of cold roll welding of aluminium alloy to steel strip. Mater. Sci. Technol., 2004, 20(8): 1064.

[11]

Naseri M., Reihanian M., Borhani E. Bonding behavior during cold roll-cladding of tri-layered Al/brass/Al composite. J.^Manuf. Processes, 2016, 24, 125.

[12]

Mohamed H.A., Washburn J. Mechanism of solid state pressure welding. Weld. J., 1975, 54(9): 302.

[13]

Vaidyanath L.R., Nicholas M.G., Milner D.R. Pressure welding by rolling. Br. Weld. J., 1959, 6, 13.

[14]

Granjon H. Fundamental of Welding Metallurgy, 1991

[15]

Parks J.M. Recrystallization in welding. Weld. J., 1953, 32, 209.

[16]

Le H.R., Stucliffe M.P.F., Wang P.Z., Burstein G.T. Surface oxide fracture in cold aluminium rolling. Acta Mater., 2004, 52(4): 911.

[17]

Wright P.K., Snow D.A., Tay C.K. Interfacial conditions and bond strength in cold pressure welding by rolling. Met. Technol., 1978, 5(1): 24.

[18]

Eizadjou M., Manesh H.D., Janghorban K. Investigation of roll bonding between aluminum alloy strips. Mater. Des., 2008, 29(4): 909.

[19]

Jamaati R., Toroghinejad M.R. Cold roll bonding bond strengths: review. Mater. Sci. Technol., 2011, 27(7): 1101.

[20]

Kaabi A., Bienvenu Y., Ryckelynck D., Prévond L., Pierre B. Architectured bimetallic laminates by roll bonding: bonding mechanisms and applications. Mater. Sci. Technol., 2014, 30(7): 782.

[21]

Abbasi M., Toroghinejad M.R. Effects of processing parameters on the bond strength of Cu/Cu roll-bonded strips. J. Mater. Process. Technol., 2010, 210(3): 560.

[22]

McEwan K.J.B., Milner D.R. Pressure welding of dissimilar metals. Br. Weld. J., 1962, 9, 406.

[23]

Jamaati R., Toroghinejad M.R. Effect of Al2O3 nano-particles on the bond strength in CRB^process. Mater. Sci. Eng. A, 2010, 527(18-19): 4858.

[24]

Shabani A., Toroghinejad M.R., Shafyei A. Effect of post-rolling annealing treatment and thickness of nickel coating on the bond strength of Al-Cu strips in cold roll bonding process. Mater. Des., 2012, 40, 212.

[25]

Jamaati R., Toroghinejad M.R. The role of surface preparation parameters on cold roll bonding of aluminum strips. J. Mater. Eng. Perform., 2011, 20(2): 191.

[26]

Clemensen C., Juelstorp O., Bay N. Cold welding. Part 3: Influence of surface preparation on bond strength. Met. Constr., 1986, 18(10): 625.

[27]

Alizadeh M., Paydar M.H. Study on the effect of presence of TiH2 particles onthe roll bonding behavior of aluminum alloy strips. Mater. Des., 2009, 30(1): 82.

[28]

Schmidt C.W., Knieke C., Maier V., Höppel H.W., Peukert W., Göken M. Influence of nanoparticle reinforcement on the mechanical properties of ultrafine-grained aluminium produced by ARB. Mater. Sci. Forum, 2011, 667-669, 725.

[29]

Jamaati R., Toroghinejad M. R., Edris H. Effect of SiC^nanoparticles on bond strength of cold roll bonded IF^steel. J. Mater. Eng. Perform., 2013, 22(11): 3348.

[30]

Lu C., Tieu K., Wexler D. Significant enhancement of bond strength in the accumulative roll bonding process using nano-sized SiO2 particles. J. Mater. Process. Technol., 2009, 209(10): 4830.

[31]

Yousefi Mehr V., Toroghinejad M.R., Rezaeian A. The effects of oxide film and annealing treatment on the bond strength of Al-Cu strips in cold roll bonding process. Mater. Des., 2014, 53, 174.

[32]

Shabani A., Toroghinejad M.R. Investigation of the microstructure and the mechanical properties of Cu–NiC^composite produced by accumulative roll bonding and coating processes. J. Mater. Eng. Perform., 2015, 24(12): 4746.

[33]

Hasford W.F. Mechanical Behavior of Materials, 2005

[34]

Movahedi M., Madaah-Hosseini H.R., Kokabi A.H. The influence of roll bonding parameters on the bond strength of Al-3003/Zn soldering sheet. Mater. Sci. Eng. A, 2008, 487(1-2): 417.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/