Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces

Davood Rahmatabadi , Moslem Tayyebi , Ramin Hashemi , Ghader Faraji

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (5) : 564 -572.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (5) : 564 -572. DOI: 10.1007/s12613-018-1603-x
Article

Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces

Author information +
History +
PDF

Abstract

In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding (ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.

Keywords

multi-layered composite / Al/Cu/Mg / accumulative roll bonding / fractography / mechanical properties / microstructure

Cite this article

Download citation ▾
Davood Rahmatabadi, Moslem Tayyebi, Ramin Hashemi, Ghader Faraji. Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(5): 564-572 DOI:10.1007/s12613-018-1603-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F.A. Marandi, A.H. Jabbari, M. Sedighi, and R. Hashemi, An Experimental, analytical, and numerical investigation of hydraulic bulge test in two-layer Al–Cu Sheets, J. Manuf. Sci. Eng., 139(2017), No. 3, article No. 031005.

[2]

Vini M.H., Sedighi M., Mondali M. Mechanical properties, bond strength and microstructural evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB). Int. J. Mater. Res., 2017, 108(1): 53.

[3]

Rahimi H., Sedighi M., Hashemi R. Forming limit diagrams of fine-grained Al 5083 produced by equal channel angular rolling process. Proceedings of the Institution of Mechanical Engineers, Part L. Journal of Materials: Design and Applications, 2016

[4]

Alizadeh M., Samiei M. Fabrication of nanostructured Al/Cu/Mn metallic multilayer composites by accumulative roll bonding process and investigation of their mechanical properties. Mater. Des., 2014, 56, 680.

[5]

Wu K., Chang H., Maawad E., Gan W.M., Brokmeier H.G., Zheng M.Y. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB). Mater. Sci. Eng. A, 2010, 527(13-14): 3073.

[6]

Asadi P., Faraji G., Besharati M.K. Producing of AZ91/SiC^composite by friction stir processing (FSP). Int. J.^Adv. Manuf. Technol., 2010, 51(1-4): 247.

[7]

Faraji G., Dastani O., Mousavi S.A.A.A. Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP. J. Mater. Eng. Perform., 2011, 20(9): 1583.

[8]

Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci., 2000, 45(2): 103.

[9]

Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci., 2006, 51(7): 881.

[10]

Valiev R.Z., Krasilnikov N.A., Tsenev N.K. Plastic deformation of alloys with submicron-grained structure. Mater. Sci. Eng. A, 1991, 137, 35.

[11]

Azimi A., Tutunchilar S., Faraji G., Givi M. B. Mechanical properties and microstructural evolution during multi-pass ECAR of Al 1100-O alloy. Mater. Des., 2012, 42, 388.

[12]

Sakai G., Horita Z., Langdon T. G. Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater. Sci. Eng. A, 2004, 393(1-2): 344.

[13]

Zhilyaev A.P., Langdon T.G. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci., 2008, 53(6): 893.

[14]

Horita Z.J., Smith D.J., Furukawa M., Nemoto M., Valiev R.Z., Langdon T.G. An investigation of grain boundaries in submicrometer-grained Al–Mg solid solution alloys using high-resolution electron microscopy. J.^Mater. Res., 1996, 11(8): 1880.

[15]

Yin J.G., Lu J., Ma H.T., Zhang P.S. Nanostructural formation of fine grained aluminum alloy by severe plastic deformation at cryogenic temperature. J. Mater. Sci., 2004, 39(8): 2851.

[16]

Babaei A., Faraji G., Mashhadi M.M., Hamdi M. Repetitive forging (RF) using inclined punches as a new bulk severe plastic deformation method. Mater. Sci. Eng. A, 2012, 558, 150.

[17]

Faraji G., Abrinia K., Mashhadi M.M., Hamdi M. An upper-bound analysis for frictionless TCAP process. Arch. Appl. Mech., 2013, 83(4): 483.

[18]

Faraji G., Mashhadi M.M., Kim H.S. Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes. Mater. Lett., 2001, 65(19-20): 3009.

[19]

Richert M., Stüwe H., Richert J., Pippan R., Motz C. Characteristic features of microstructure of AlMg5 deformed to large plastic strains. Mater. Sci. Eng. A, 2001, 301(2): 237.

[20]

Richert J., Richert M. A new method for unlimited deformation of metals and alloys. Aluminum, 1986, 62(8): 604.

[21]

Saito Y., Utsunomiya H., Tsuji N., Sakai T. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Mater., 1999, 47(2): 579.

[22]

Saito Y., Hong R.G., Tsuji N., Utsunomiya H., Sakai T. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scripta Mater., 1998, 39(9): 1221.

[23]

Pirgazi H., Akbarzadeh A., Petrov R., Kestens L. Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater. Sci. Eng. A, 2008, 497(1-2): 132.

[24]

Eizadjou M., Talachi A.K., Manesh H.D., Shahabi H.S., Janghorban K. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Compos. Sci. Technol., 2008, 68(9): 2003.

[25]

Dehsorkhi R.N., Qods F., Tajally M. Investigation on microstructure and mechanical properties of Al–Zn composite during accumulative roll bonding (ARB) process. Mater. Sci. Eng. A, 2011, 530, 63.

[26]

Chang H., Zheng M.Y., Xu C., Fan G.D., Brokmeier H.G., Wu K. Microstructure and mechanical properties of the Mg/Al multilayer fabricated by accumulative roll bonding (ARB) at ambient temperature. Mater. Sci. Eng. A, 2012, 543, 249.

[27]

Mozaffari A., Manesh H.D., Janghorban K. Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. J.^Alloys Compd., 2010, 489(1): 103.

[28]

Tayyebi M., Eghbali B. Study on the microstructure and mechanical properties of multilayer Cu/Ni composite processed by accumulative roll bonding. Mater. Sci. Eng. A, 2013, 559, 759.

[29]

Ng H.P., Przybilla T., Schmidt C., Lapovok R., Orlov D., Hpِpel H.W., Gkِen M. Asymmetric accumulative roll bonding of aluminium-titanium composite sheets. Mater. Sci. Eng. A, 2013, 576, 306.

[30]

Motevalli P.D., Eghbali B. Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding. Mater. Sci. Eng. A, 2015, 628, 135.

[31]

Mahdavian M.M., Ghalandari L., Reihanian M. Accumulative roll bonding of multilayered Cu/Zn/Al: An evaluation of microstructure and mechanical properties. Mater. Sci. Eng. A, 2013, 579, 99.

[32]

Zhang R., Acoff V.L. Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils. Mater. Sci. Eng. A, 2007, 463(1-2): 67.

[33]

Shabani A., Toroghinejad M.R., Shafyei A. Fabrication of Al/Ni/Cu composite by accumulative roll bonding and electroplating processes and investigation of its microstructure and mechanical properties. Mater. Sci. Eng. A, 2012, 558, 386.

[34]

Min G., Lee J.M., Kang S.B., Kim H.W. Evolution of microstructure for multilayered Al/Ni composites by accumulative roll bonding process. Mater. Lett., 2006, 60(27): 3255.

[35]

Rahmatabadi D., Hashemi R., Mohammadi B., Shojaee T. Experimental evaluation of the plane stress fracture toughness for ultra-fine grained aluminum specimens prepared by accumulative roll bonding process. Mater. Sci. Eng. A, 2017, 708, 301.

[36]

Pineau A., Benzerga A.A., Pardoen T. Failure of metals III: Fracture and fatigue of nanostructured metallic materials. Acta Mater., 2016, 107, 508.

[37]

Xing Z.P., Kang S.B., Kim H.W. Structure and properties of AA3003 alloy produced by accumulative roll bonding process. J.^Mater. Sci., 2002, 37(4): 717.

[38]

Hansen N., Huang X., Ueji R., Tsuji N. Structure and strength after large strain deformation. Mater. Sci. Eng. A, 2004, 387-389, 191.

[39]

Rahmatabadi D., Hashemi R. Experimental evaluation of forming limit diagram and mechanical properties of nano/ultra-fine grained aluminum strips fabricated by accumulative roll bonding. Int. J. Mater. Res., 2017, 108, 1036.

[40]

Abdolvand H., Faraji G., Givi M.K.B., Hashemi R., Riazat M. Evaluation of the microstructure and mechanical properties of the ultrafine grained thin-walled tubes processed by severe plastic deformation. Met. Mater. Int., 2015, 21(6): 1068.

[41]

Faraji G., Mashhadi M.M., Bushroa A.R., Babaei A. TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process. Mater. Sci. Eng. A, 2013, 563, 193.

[42]

Mehr V.Y., Rezaeian A., Toroghinejad M.R. Application of accumulative roll bonding and anodizing process to produce Al–Cu–Al2O3 composite. Mater. Des., 2015, 70, 53.

[43]

Sedighi M., Vini M.H., Farhadipour P. Effect of alumina content on the mechanical properties of AA5083/Al2O3 composites fabricated by warm accumulative roll bonding. Powder Metall. Met. Ceram., 2016, 55(7-8): 413.

[44]

Mehr V.Y., Toroghinejad M.R., Rezaeian A. Mechanical properties and microstructure evolutions of multilayered Al-Cu composites produced by accumulative roll bonding process and subsequent annealing. Mater. Sci. Eng. A, 2014, 601, 40.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/