Excellent mechanical properties and resistance to cavitation erosion for an ultra-low carbon CrMnN stainless steel through quenching and partitioning treatment

Ze-an Zhou , Wan-tang Fu , Zhe Zhu , Bin Li , Zhong-ping Shi , Shu-hua Sun

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (5) : 547 -553.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (5) : 547 -553. DOI: 10.1007/s12613-018-1601-z
Article

Excellent mechanical properties and resistance to cavitation erosion for an ultra-low carbon CrMnN stainless steel through quenching and partitioning treatment

Author information +
History +
PDF

Abstract

The retained austenite content (RAC), the mechanical properties, and the resistance to cavitation erosion (CE) of the 00Cr13Mn8MoN steel after quenching and partitioning (Q&P) processing were investigated. The results show that the Q&P process affected the RAC, which reached the maximum value after partitioning at 400°C for 10 min. The tensile strength of the steel slightly decreased with increasing partitioning temperature and time. However, the elongation and product of strength and elongation first increased and then decreased. The sample partitioned at 400°C for 10 min exhibited the optimal property: a strength-ductility of 23.8 GPa·%. The resistance to CE for the 00Cr13Mn8MoN steel treated by the Q&P process was improved due to work hardening, spalling, and cavitation-induced martensitic transformation of the retained austenite.

Keywords

CrMnN steel / quenching and partitioning process / retained austenite / mechanical property / cavitation erosion

Cite this article

Download citation ▾
Ze-an Zhou, Wan-tang Fu, Zhe Zhu, Bin Li, Zhong-ping Shi, Shu-hua Sun. Excellent mechanical properties and resistance to cavitation erosion for an ultra-low carbon CrMnN stainless steel through quenching and partitioning treatment. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(5): 547-553 DOI:10.1007/s12613-018-1601-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lo K.H., Shek C.H., Lai J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R, 2009, 65(4-6): 39.

[2]

Wang Z.H., Meng Q., Qu M.G., Zhou Z.A., Wang B., Fu W.T. Effect of strain rate on hot ductility behavior of a high nitrogen Cr–Mn austenitic steel. Metall. Mater. Trans. A, 2016, 47(3): 1268.

[3]

Fu W.T., Yang Y.B., Jing T.F., Zheng Y.Z., Yao M. The resistance to cavitation erosion of CrMnN^stainless steels. J. Mater. Eng. Perform., 1998, 7(6): 801.

[4]

Zhang R.H., Zhou Z.A., Guo M.W., Qi J.J., Sun S.H., Fu W.T. Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V. Int. J. Miner. Metall. Mater., 2015, 22(10): 1043.

[5]

Santa J.F., Blanco J.A., Giraldo J.E., Toro A. Cavitation erosion of martensitic and austenitic stainless steel welded coatings. Wear, 2011, 271(9-10): 1445.

[6]

Cvijović Z., Radenković G. Microstructure and pitting corrosion resistance of annealed duplex stainless steel. Corros. Sci., 2006, 48(12): 3887.

[7]

Bilmes P.D., Solari M., Llorente C.L. Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals. Mater. Charact., 2001, 46(4): 285.

[8]

Sreedhar B.K., Albert S.K., Pandit A.B. Cavitation erosion testing of austenitic stainless steel (316L) in liquid sodium. Wear, 2015, 328-329, 436.

[9]

Liu W., Zheng Y.G., Liu C.S., Yao Z.M., Ke W. Cavitation erosion behavior of Cr-Mn-N^stainless steels in comparison with 0Cr13Ni5Mo stainless steel. Wear, 2003, 254(7-8): 713.

[10]

Kwok C.T., Man H.C., Cheng F.T. Cavitation erosion and pitting corrosion behaviour of laser surface-melted martensitic stainless steel UNS^S42000. Surf. Coat. Technol., 2000, 126(2-3): 238.

[11]

Lee S., Lee S.J., Cooman B.C.D. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning. Scripta Mater., 2011, 65(3): 225.

[12]

Speer J., Matlock D.K., Cooman B.C.D., Schroth J.G. Carbon partitioning into austenite after martensite transformation. Acta Mater., 2003, 51(9): 2611.

[13]

Speer J.G., Edmonds D.V., Rizzo F.C., Matlock D.K. Partitioning of carbon from supersaturated plates of ferrite. with application to steel processing and fundamentals of the bainite transformation, Curr. Opin. Solid State Mater. Sci., 2004, 8(3-4): 219.

[14]

Clarke A.J., Speer J.G., Miller M.K., Hackenberg R.E., Edmonds D.V., Matlock D.K., Rizzo F.C., Clarke K.D., Moor E.D. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A^critical assessment. Acta Mater., 2008, 56(1): 16.

[15]

Li W.S., Gao H.Y., Li Z.Y., Nakashima H., Hata S., Tian W.H. Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process. Int. J. Miner. Metall. Mater., 2016, 23(3): 303.

[16]

Li W.S., Gao H.Y., Nakashima H., Hata S., Tian W.H. Microstructural evolution and mechanical properties of a low-carbon quenching and partitioning steel after partial and full austenitization. Int. J. Miner. Metall. Mater., 2016, 23(8): 906.

[17]

Li Y., Xiao G.Y., Chen L.B., Lu Y.P. Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel. Int. J. Miner. Metall. Mater., 2014, 21(12): 1196.

[18]

Tsuchiyama T., Tobata J., Tao T., Nakada N., Takaki S. Quenching and partitioning treatment of a low-carbon martensitic stainless steel. Mater. Sci. Eng. A, 2012, 532, 585.

[19]

Mola J., Cooman B.C.D. Quenching and partitioning (Q&P) processing of martensitic stainless steels. Metall. Mater. Trans. A, 2013, 44(2): 946.

[20]

Fu W.T., Wang Z., Jing T.F., Zheng Y.Z. Thermal stability of undercooled Austenite in a CrMnN dual-phase stainless steel. Heat Treat. Met., 1997, 11, 9.

[21]

Li Z., Wu D. Effects of hot deformation and subsequent austempering on the mechanical properties of Si–Mn TRIP^steels. ISIJ Int., 2006, 46(1): 121.

[22]

Wendler M., Ullrich C., Hauser M., Krüger L., Volkova O., Weiß A., Mola J. Quenching and partitioning (Q&P) processing of fully austenitic stainless steels. Acta Mater., 2017, 133, 346.

[23]

Hajyakbary F., Sietsma J., Miyamoto G., Furuhara T., Santofimia M.J. Interaction of carbon partitioning. carbide precipitation and bainite formation during the Q&P process in a low C steel, Acta Mater., 2016, 104, 72.

[24]

Seo E.J., Cho L., Cooman B.C.D. Application of quenching and partitioning (Q&P) processing to press hardening steel. Metall. Mater. Trans. A, 2014, 45(9): 4022.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/