Mineral structure and crystal morphologies of high-iron hydrargillite

Hui-bin Yang , Feng-qin Liu , Xiao-lin Pan

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (5) : 505 -514.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (5) : 505 -514. DOI: 10.1007/s12613-018-1597-4
Article

Mineral structure and crystal morphologies of high-iron hydrargillite

Author information +
History +
PDF

Abstract

Various characterization methods, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller surface-area measurements, thermogravimetry–differential scanning calorimetry, X-ray diffraction, and infrared spectroscopy, were used to study the mineral structure and surface characteristics of high-iron hydrargillite. Gibbsite, goethite, and hematite were found to be the main mineral components of hydrargillite, whereas the goethite and hematite were closely clad to the surface of the multilayer gibbsite crystals. Compared with the synthetic gibbsite, the hydrargillite contained more structural micropores generated by the mineral evolution during the mineralization process. The gibbsite in hydrargillite contained less crystal water compared with the synthetic gibbsite, and it was a typical polymorphic structure. The isomorphous substitution of Al and Fe was observed in goethite. The dissolution-controlling step of hydrargillite was the ionic diffusion speed because of the goethite and hematite that closely covered and encapsulated the gibbsite crystals.

Keywords

hydrargillite / goethite / gibbsite / mineral structure / crystal morphologies

Cite this article

Download citation ▾
Hui-bin Yang, Feng-qin Liu, Xiao-lin Pan. Mineral structure and crystal morphologies of high-iron hydrargillite. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(5): 505-514 DOI:10.1007/s12613-018-1597-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Certini G., Wilson M.J., Hillier S.J., Fraser A.R., Delbos E. Mineral weathering in trachydacitic-derived soils and saprolites involving formation of embryonic halloysite and gibbsite at Mt. Amiata. Central Italy, Geoderma, 2006, 133(3-4): 173.

[2]

Herrmann L., Anongrak N., Zarei M., Schuler U., Spohrer K. Factors and processes of gibbsite formation in Northern Thailand. Catena, 2007, 71(2): 279.

[3]

Mulyanto B., Stoops G., Ranst E.V. Precipitation and dissolution of gibbsite during weathering of andesitic boulders in humid tropical West Java. Indonesia, Geoderma, 1999, 89(3-4): 287.

[4]

Qian L.J., Wang G., Ou L.H., Hu X. Contrast of structure characteristics and sedimentary environment of sedimentary bauxite deposit in Pingguo Guangxi and Qingzhen Guizhou. Sci. Technol. Eng., 2016, 16(4): 135.

[5]

Chen J.G., Liu Y.H., Xu J.W. Differences of mineralization of two gibbsite bauxites in Guangxi province. Earth Sci. Front., 1999, 6, 251.

[6]

Zhang Z.W., Li Y.J., Zhou L.J., Wu C.Q. Coal-bauxite-iron structure and geochemical features of bauxites ore-bearing rock series in southeast Guizhou. Acta Geol. Sin., 2012, 86(7): 1119.

[7]

Bao L., Zhang T.A., Lv G.Z., Dou Z.H. Microstructural change of gibbsite particle in digestion process. J. Northeast. Univ. Nat. Sci., 2010, 31(10): 1453.

[8]

Wang S., Wang N., Li C.L., Zhang J.J., Dou S. FTIR Spectroscopic analysis of Cu2+ adsorption on hematite and bayerite. Spectrosc. Spect. Anal., 2011, 31(9): 2403.

[9]

Hu S.C., Zhao H.Q., Ma H.L., Zhang Y. Normal atmosphere digestion tests on gibbsite of Hai-nan province. Min. Metall. Eng., 2012, 32(z1): 107.

[10]

Hu S.C., Wang H.B., Zhao H.Q., Ma H.L., Zhao B.J. Normal atmosphere digestion tests on low alumina to silica ratio and high iron gibbsite bauxite. Conserv. Utiliz. Miner. Resour., 2011, 1, 60.

[11]

Li X.B., Zhao D.F., Yang S.S., Wang D.Q., Zhou Q.S., Liu G.H. Influence of thermal history on conversion of aluminate species in sodium aluminate solution. Trans. Nonferrous Met. Soc. China, 2014, 24(10): 3348.

[12]

Li X.B., Yan L., Zhou Q.S., Liu G.H., Peng Z.H. Thermodynamic model for equilibrium solubility of gibbsite in concentrated NaOH^solutions. Trans. Nonferrous Met. Soc. China, 2012, 22(2): 447.

[13]

Pereira J.A.M., Schwaab M., Dell’Oro E., Pinto J.C., Monteiro L.F., Henriques C.A. The kinetics of gibbsite dissolution in NaOH. Hydrometallurgy, 2009, 96(1-2): 6.

[14]

Addai-mensah J., Dawe J., Ralston J. The dissolution and interactions of gibbsite particles in alkaline media. Dev. Miner. Process., 2000, 13, C6.

[15]

Bao L., Zhang T.A., Liu Y., Dou Z.H., G.Z., Wang X.M., Ma J., Jiang X.L. The most probable mechanism function and kinetic parameters of gibbsite dissolution in NaOH. Chin. J. Chem. Eng., 2010, 18(4): 630.

[16]

Yin A.J., Chen Q.Y., Zhang P.M. Studies on the kinetics of dissolution process of synthetic gibbsite by DSC. Chem. Res. Chin. Univ., 1991, 12(11): 1507.

[17]

Li C.Q., Zhang P.M., Chen Q.Y., Chen X.M. Investigation of dissolution process kinetics of gibbsite. Nonferrous Met., 1991, 43(4): 52.

[18]

Hua Y.X. Introduction to Metallurgical Process Dynamics, 2004 188.

[19]

Li H.G. Hydrometallurgy, 2005 69.

[20]

Yang H.B., Pan X.L., Yu H.Y., Tu G.F., Sun J.M. Dissolution kinetics and mechanism of gibbsitic bauxite and pure gibbsite in sodium hydroxide solution under atmospheric pressure. Tran. Nonferrous Met. Soc. China, 2015, 25(12): 4151.

[21]

Yang H.B., Pan X.L., Yu H.Y., Tu G.F., Sun J.M. Effect of ferrite content on dissolution kinetics of gibbsitic bauxite under atmospheric pressure in NaOH solution. J. Cent. South Univ., 2017, 24(3): 489.

[22]

Yang H.B., Tu G.F., Pan X.L., Yu H.Y., Hu J. Dissolution kinetics of high iron gibbsitic bauxite. Nonferrous Met. Extract. Metall., 2016, 2, 19.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/