Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering

Hui Xu , Jian-hao Chen , Shu-bin Ren , Xin-bo He , Xuan-hui Qu

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (4) : 459 -471.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (4) : 459 -471. DOI: 10.1007/s12613-018-1592-9
Article

Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering

Author information +
History +
PDF

Abstract

Nickel-coated graphite flakes/copper (GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes (GFs) being modified by Ni–P electroless plating. The effects of the phase transition of the amorphous Ni–P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity (TC) of the GN/Cu composites were systematically investigated. The introduction of Ni–P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650°C and slightly increased the TC of the X–Y basal plane of the GF/Cu composites with 20vol%–30vol% graphite flakes. However, when the graphite flake content was greater than 30vol%, the TC of the GF/Cu composites decreased with the introduction of Ni–P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.

Keywords

copper matrix composites / graphite flake / nickel–phosphorus transition layer / sintering behavior / thermal conductivity

Cite this article

Download citation ▾
Hui Xu, Jian-hao Chen, Shu-bin Ren, Xin-bo He, Xuan-hui Qu. Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(4): 459-471 DOI:10.1007/s12613-018-1592-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xin G., Sun H., Hu T., Fard H.R., Sun X., Koratkar N., Borca-Tasciuc T., Lian J. Large-area freestanding graphene paper for superior thermal management. Adv. Mater., 2014, 26(26): 4521.

[2]

Prieto R., Molina J.M., Narciso J., Louis E. Fabrication and properties of graphite flakes/metal composites for thermal management applications. Scripta Mater., 2008, 59(1): 11.

[3]

Zhou C., Ji G., Chen Z., Wang M.L., Addad A., Schryvers D., Wang H.W. Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications. Mater. Des., 2014, 63, 719.

[4]

Li W.J., Liu Y., Wu G.H. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting. Carbon, 2015, 95, 545.

[5]

Firkowska I., Boden A., Boerner B., Reich S. The origin of high thermal conductivity and ultralow thermal expansion in copper-graphite composites. Nano Lett., 2015, 15(7): 4745.

[6]

Chen J.H., Ren S.B., He X.B., Qu X.H. Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering. Carbon, 2017, 121, 25.

[7]

Weber L., Tavangar R. Diamond-based metal matrix composites for thermal management: potential and limits. Adv. Mater. Res., 2009, 59, 111.

[8]

Lloyd J.C., Neubauer E., Barcena J., Clegg W.J. Effect of titanium on copper-titanium/carbon nanofibre composite materials. Compos. Sci. Technol., 2010, 70(16): 2284.

[9]

He J.S., Zhang H.L., Zhang Y., Zhao Y.M., Wang X.T. Effect of boron addition on interface microstructure and thermal conductivity of Cu/diamond composites produced by high temperature-high pressure method. Phys. Status Solidi A, 2014, 211(3): 587.

[10]

Li J.W., Wang X.T., Qiao Y., Zhang Y., He Z.B., Zhang H.L. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scripta Mater., 2015, 109, 72.

[11]

Chu K., Jia C.C., Guo H., Li W.S. On the thermal conductivity of Cu–Zr/diamond composites. Mater. Des., 2013, 45, 36.

[12]

Sun Y.H., He L.K., Zhang C., Meng Q.N., Liu B.C., Gao K., Wen M., Zheng W.T. Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating. Sci. Rep., 2017, 7, 10727.

[13]

Ma S.D., Zhao N.Q., Shi C.S., Liu E.Z., He C.N., He F., Ma L.Y. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites. Appl. Surf. Sci., 2017, 402, 372.

[14]

Cui W., Xu H., Chen J.H., Ren S.B., He X.B., Qu X.H. Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering. Int. J. Miner. Metall. Mater., 2016, 23(6): 716.

[15]

Gao J.Q., Wu Y.T., Liu L., Shen B., Hu W.B. Crystallization temperature of amorphous electroless nickel-phosphorus alloys. Mater. Lett., 2005, 59(13): 1665.

[16]

Lendvai Á R.évész, J. R. J., Lóránth J., Pádár J., Bakonyi I. Nanocrystallization studies of an electroless plated Ni–P^amorphous alloy. J. Electrochem. Soc., 2001, 148, C715.

[17]

Rabizadeh T., Allahkaram S.R., Zarebidaki A. An investigation on effects of heat treatment on corrosion properties of Ni-P^electroless nano-coatings. Mater. Des., 2010, 31(7): 3174.

[18]

Park S.H., Lee D.N. A study on the microstructure and phase transformation of electroless nickel deposits. J. Mater. Sci., 1988, 23(5): 1643.

[19]

Hur K.H., Jeong J.H., Lee D.N. Microstructures and crystallization of electroless Ni–P deposits. J. Mater. Sci., 1990, 25, 2573.

[20]

Guo Z., Keong K.G., Sha W. Crystallisation and phase transformation behaviour of electroless nickel phosphorus platings during continuous heating. J. Alloys Compd., 2003, 358(1-2): 112.

[21]

Ho C.Y., Ackerman M.W., Wu K.Y., Oh S.G., Havill T.N. Thermal conductivity of ten selected binary alloy systems. J. Phys. Chem. Ref. Data, 1978, 7(3): 959.

[22]

Divinski S., Ribbe J., Schmitz G., Herzig C. Grain boundary diffusion and segregation of Ni in Cu. Acta Mater., 2007, 55(10): 3337.

[23]

Shimizu H., Ono M., Koyama N., Ishida Y. Sputter-enhanced diffusion phenomena in Cu/Ni alloys at elevated temperatures. J. Appl. Phys., 1982, 53(4): 3044.

[24]

Modin E.B., Pustovalov E.V., Fedorets A.N., Dubinets A.V., Grudin B.N., Plotnikov V.S., Grabchikov S.S. Atomic structure and crystallization processes of amorphous (Co. Ni)–P metallic alloy, J. Alloys Compd., 2015, 641, 139.

[25]

Chen K.C., Wu W.W., Liao C.N., Chen L.J., Tu K.N. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008, 321(5892): 1066.

[26]

Nan C.W., Birringer R., Clarke D.R., Gleiter H. The effective thermal conductivity of particular composites with interfacial thermal resistance. J. Appl. Phys., 1997, 81(10): 6692.

[27]

Nan C.W., Liu G., Lin Y.H., Li M. Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett., 2004, 85(16): 3549.

[28]

Zhu Y.B., Bai H., Xue C., Zhou R., Xu Q.F., Tao P.F., Wang C., Wang J.W., Jiang N. Thermal conductivity and mechanical properties of a flake graphite/Cu composite with a silicon nano-layer on a graphite surface. RSC Adv., 2016, 100, 98190.

[29]

Prieto R., Molina J.M., Narciso J., Louis E. Thermal conductivity of graphite flakes–SiC^particles/metal composites. Compos. Part A, 2011, 42(12): 1970.

[30]

Swartz E.T., Pohl R.O. Thermal boundary resistance. Rev. Mod. Phys., 1989, 61, 605.

[31]

Molina J.M., Prieto R., Narciso J., Louis E. The effect of porosity on the thermal conductivity of Al–12 wt.% Si/SiC^composites. Scripta Mater., 2009, 60(7): 582.

[32]

D.V. Louzguine-luzgin, A.D. Setyawan, H. Kato, and A. Inoue, Influence of thermal conductivity on the glass-forming ability of Ni-based and Cu-based alloys, Appl. Phys. Lett., 88(2006), No. 25, article No.251902.

[33]

Jagannadham K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metall. Mater. Trans. B, 2012, 43(2): 316.

[34]

Lu K., Wang J.T., Wei W.D. Thermal expansion and specific heat capacity of nanocrystalline Ni–P alloy. Scr. Metall. Mater., 1991, 25(3): 619.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/