Study on reduction of MoS2 powders with activated carbon to produce Mo2C under vacuum conditions

Guo-hua Zhang , He-qiang Chang , Lu Wang , Kuo-chih Chou

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (4) : 405 -412.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (4) : 405 -412. DOI: 10.1007/s12613-018-1585-8
Article

Study on reduction of MoS2 powders with activated carbon to produce Mo2C under vacuum conditions

Author information +
History +
PDF

Abstract

A method of preparing Mo2C via vacuum carbothermic reduction of MoS2 in the temperature range of 1350–1550°C was proposed. The effects of MoS2-to-C molar ratio (α, α = 1:1, 1:1.5, and 1:2.5) and reaction temperature (1350 to 1550°C) on the reaction were studied in detail. The phase transition, morphological evolution, and residual sulfur content of the products were analyzed by X-ray diffraction, field-emission scanning electron microscopy, and carbon–sulfur analysis, respectively. The results showed that the complete decomposition of MoS2 under vacuum is difficult, whereas activated carbon can react with MoS2 under vacuum to generate Mo2C. Meanwhile, higher temperatures and the addition of more carbon accelerated the rate of carbothermic reduction reaction and further decreased the residual sulfur content. From the experimental results, the optimum molar ratio α was concluded to be 1:1.5.

Keywords

vacuum treatment / carbon thermoreduction / molybdenum minerals / molybdenum carbide / microstructure

Cite this article

Download citation ▾
Guo-hua Zhang, He-qiang Chang, Lu Wang, Kuo-chih Chou. Study on reduction of MoS2 powders with activated carbon to produce Mo2C under vacuum conditions. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(4): 405-412 DOI:10.1007/s12613-018-1585-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Haines J., Léger J.M., Chateau C., Lowther J.E. Experimental and theoretical investigation of Mo2C at high pressure. J. Phys. Condens. Matter, 2001, 13(11): 2447.

[2]

Chen W.F., Muckerman J.T., Fujita E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun., 2013, 49(79): 8896.

[3]

Li X.Y., Ma D., Chen L.M., Bao X.H. Fabrication of molybdenum carbide catalysts over multi-walled carbon nanotubes by carbothermal hydrogen reduction. Catal. Lett., 2007, 116(1): 63.

[4]

Wang X.R., Yan M.F., Chen H.T. First-principle calculations of hardness and melting point of Mo2C. J.^Mater. Sci. Technol., 2009, 25(3): 419.

[5]

Pavlina E.J., Speer J.G., Van Tyne C.J. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron. Scripta Mater., 2012, 66(5): 243.

[6]

Zhou Z.N., Wu K.M. Molybdenum carbide precipitation in an Fe-C-Mo alloy under a high magnetic field. Scripta Mater., 2009, 61(7): 670.

[7]

Yamasaki S., Bhadeshia H.K.D.H. Modelling and characterisation of Mo2C precipitation and cementite dissolution during tempering of Fe-C-Mo martensitic steel. Mater. Sci. Technol., 2003, 19(6): 723.

[8]

Wang H.M., Wang X.H., Zhang M.H., Du X.Y., Li W., Tao K.Y. Synthesis of bulk and supported molybdenum carbide by a single-step thermal carburization method. Chem. Mater., 2007, 19(7): 1801.

[9]

Choi J.G., Brenner J.R., Thompson L.T. Pyridine hydrodenitrogenation over molybdenum carbide catalysts. J. Catal., 1995, 154(1): 33.

[10]

Christofoletti T., Assaf J.M., Assaf E.M. Methane steam reforming on supported and non-supported molybdenum carbides. Chem. Eng. J., 2005, 106(2): 97.

[11]

Liang Z.H., Ying P.L., Li C. Nanostructured β-Mo2C^prepared by carbothermal hydrogen reduction on ultrahigh surface area carbon material. Chem. Mater., 2002, 14(7): 3148.

[12]

Xiao T.C., York A.P.E., Al-Megren H., Williams C.V., Wang H.T., Green M.L.H. Preparation and characterisation of bimetallic cobalt and molybdenum carbides. J. Catal., 2001, 202(1): 100.

[13]

Vitale G., Frauwallner M.L., Hernandez E., Scott C.E., Pereira-Almao P. Low temperature synthesis of cubic molybdenum carbide catalysts via pressure induced crystallographic orientation of MoO3 precursor. Appl. Catal. A, 2011, 400(1-2): 221.

[14]

Dang J., Zhang G.H., Wang L., Chou K.C., Pistorius P.C. Study on reduction of MoO2 powders with CO^to produce Mo2C. J. Am. Ceram. Soc., 2016, 99(3): 819.

[15]

Vitale G., Guzmán H., Frauwallner M.L., Scott C.E., Pereira-Almao P. Synthesis of nanocrystalline molybdenum carbide materials and their characterization. Catal. Today, 2015, 250, 123.

[16]

Nelson J.A., Wagner M.J. High surface area Mo2C and WC^prepared by alkalide reduction. Chem. Mater., 2002, 14(5): 1639.

[17]

Baklanova O.N., Vasilevich A.V., Lavrenov A.V., Drozdov V.A., Muromtsev I.V., Arbuzov A.B., Trenikhin M.V., Sigaeva S.S., Temerev V.L., Gorbunova O.V., Likholobov V.A., Nizovskii A.I., Kalinkin A.V. Molybdenum carbide synthesized by mechanical activation an inert medium. J. Alloys Compd., 2017, 698, 1018.

[18]

Preiss H., Berger L.M., Schultze D. Studies on the carbothermal preparation of titanium carbide from different gel precursors. J. Eur. Ceram. Soc., 1999, 19(2): 195.

[19]

Padilla R., Ruiz M.C., Sohn H.Y. Reduction of molybdenite with carbon in the presence of lime. Metall. Mater. Trans. B, 1997, 28(2): 265.

[20]

Prasad P.M., Mankhand T.R., Rao P.S.P., Singh S.N., Prasad A.J.K. Kinetics of the direct synthesis of molycarbide by reduction-carburization of molybdenite in the presence of lime. Metall. Mater. Trans. B, 2002, 33(3): 345.

[21]

Najafabadi S.G., Abbasi M.H., Saidi A. Thermodynamic investigation of lime-enhanced molybdenite reduction using methane-containing gases. Thermochim. Acta, 2010, 503-504, 46.

[22]

Ghasemi S., Abbasi M.H., Saidi A., Kim J.Y., Lee J.S. Sulfur-emission-free process of molybdenum carbide synthesis by lime-enhanced molybdenum disulfide reduction with methane. Ind. Eng. Chem. Res., 2011, 50(23): 13340.

[23]

Wang L., Zhang G.H., Dang J., Chou K.C. Oxidation roasting of molybdenite concentrate. Trans. Nonferrous Met. Soc. China, 2015, 25(12): 4167.

[24]

Ressler T., Jentoft R.E., Wienold J. In situ XAS and XRD studies on the formation of Mo suboxides during reduction of MoO3. J. Phys. Chem. B, 2000, 104(27): 6360.

[25]

Laferty J.M., Howe D.L., Sebenik R.F. Production of Molybdenum Oxide from Ammonium Molybdate Solutions. U.S. Patent, Appl., 1981

[26]

May W.A. Fluid Bed Reduction to Produce Flowable Molybdenum Metal. U.S. Patent, Appl., 1994

[27]

Dang J., Zhang G.H., Chou K.C., Reddy R.G., He Y., Sun Y.J. Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2. Int. J. Refract. Met. Hard Mater., 2013, 41, 216.

[28]

Dang J., Zhang G.H., Chou K.C. Study on kinetics of hydrogen reduction of MoO2. Int. J. Refract. Met. Hard Mater., 2013, 41, 356.

[29]

Porter D.A., Easterling K.E., Sherif M. Phase Transformations in Metals and Alloys, CRC Press. Florida, 2009 131.

[30]

Smith C.S. Grain shapes and other metallurgical applications of topology. Metallogr. Microstruct. Anal., 2015, 4(6): 543.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/