Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp

Shi-na Li , Rui-xin Ma , Cheng-yan Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (3) : 310 -314.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (3) : 310 -314. DOI: 10.1007/s12613-018-1574-y
Article

Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp

Author information +
History +
PDF

Abstract

The Cu2MoS4 nanoparticles were prepared using a relatively simple and convenient solid-phase process, which was applied for the first time. The crystalline structure, morphology, and optical properties of Cu2MoS4 nanoparticles were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and UV-vis spectrophotometry. Cu2MoS4 nanoparticles having a band gap of 1.66 eV exhibits good photocatalytic activity in the degradation of methylene blue, which indicates that this simple process may be critical to facilitate the cheap production of photocatalysts.

Keywords

Cu2MoS4 nanoparticles / solid-phase synthesis / degradation / photocatalyst / methyl blue

Cite this article

Download citation ▾
Shi-na Li, Rui-xin Ma, Cheng-yan Wang. Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(3): 310-314 DOI:10.1007/s12613-018-1574-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chhowalla M., Shin H.S., Eda G., Li L.J., Loh K.P., Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 2013, 5, 263.

[2]

Lei F.C., Sun Y.F., Liu K.T., Gao S., Liang L., Pan B.C., Xie Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc., 2014, 136(19): 6826.

[3]

Marchelek M., Grabowska E., Klimczuk T., Lisowski W., Zaleska-Medynska A. Various types of semiconductor photocatalysts modified by CdTe QDs and Pt NPs for toluene photooxidation in the gas phase under visible light. Appl. Surf. Sci., 2017, 393, 262.

[4]

Ansari S.A., Khan Z., Ansari M.O., Cho M.H. Earth-abundant stable elemental semiconductor red phosphorus-based hybrids for environmental remediation and energy storage applications. RSC Adv., 2016, 6(50): 44616.

[5]

Lakhera S.K., Venkataramana R., Watts A., Anpo M., Neppolian B. Facile synthesis of Fe2O3/Cu2O nanocomposite and its visible light photocatalytic activity for the degradation of cationic dyes. Res. Chem. Intermed., 2017, 43(9): 5091.

[6]

Babu S.G., Vinoth R., Neppolian B., Dionysiou D.D., Ashokkumar M. Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst. J. Hazard. Mater., 2015, 291, 83.

[7]

APL Mater., 2015, 3(10)

[8]

Lakhera S.K., Watts A., Hafeez H.Y., Neppolian B. Interparticle double charge transfer mechanism of heterojunction α-Fe2O3/Cu2O mixed oxide catalysts and its visible light photocatalytic activity. Catal. Today, 2018, 300, 58.

[9]

Jia Q., Zhang Y.C., Li J., Chen Y., Xu B. Hydrothermal synthesis of Cu2 WS4 as a visible-light-activated photocatalyst in the reduction of aqueous Cr(VI. Mater. Lett., 2014, 117(7): 24.

[10]

Ozel F., Aslan E., Sarilmaz A., Hatay P.I. Hydrogen evolution catalyzed by Cu2WS4 at liquid-liquid interfaces. ACS^Appl. Mater. Interfaces, 2016, 8(39): 25881.

[11]

Tiwari A.P., Kim D., Kim Y., Prakash O., Lee H. Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction. Nano Energy, 2016, 28, 366.

[12]

Zhang K., Chen W., Lin Y., Chen H., Haleem Y.A., Wu C., Ye F., Wang T.X., Song L. Self-assembly of ultrathin Cu2MoS4 nanobelts for highly efficient visible light-driven degradation of methyl orange. Nanoscale, 2015, 7(3): 17998.

[13]

AIP Adv., 2015, 5(3)

[14]

Pruss E.A., Snyder B.S., Stacy A.M. A new layered ternary sulfide: formation of Cu2WS4 by reaction of WS4 2- and Cu+ ions. Angew. Chem. Int. Ed., 1993, 32(2): 256.

[15]

Crossland C.J., Hickey P.J., Evans J.S.O. The synthesis and characterisation of Cu2MX4 (M= W or Mo; X = S, Se or S/Se) materials prepared by a solvothermal method. J. Mater. Chem., 2005, 15(34): 3452.

[16]

Liang H.R., Guo L.J. Synthesis, characterization and photocatalytic performances of Cu2MoS4. Int. J. Hydrogen Energy, 2010, 35(13): 7104.

[17]

Jing D.W., Liu M.C., Chen Q.Y., Guo L.J. Efficient photocatalytic hydrogen production under visible light over a novel W-based ternary chalcogenide photocatalyst prepared by a hydrothermal process. Int. J. Hydrogen Energy, 2010, 35(16): 8521.

[18]

Tran P.D., Mai N., Pramana S.S., Bhattacharjee A., Chiam S.Y., Fize J., Field M.J., Artero V., Wong L.H., Loo J., Barber J. Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water. Energy Environ. Sci., 2012, 5(10): 8912.

[19]

AIP Adv., 2015, 5(7)

[20]

Chen B.B., Ma D.K., Ke Q.P., Chen W., Huang S.M. Indented Cu2MoS4 nanosheets with enhanced electrocatalytic and photocatalytic activities realized through edge engineering. Phys. Chem. Chem. Phys., 2016, 18(9): 6713.

[21]

Ma R.X., Yang F., Li S.N., Zhang X.Y., Li X., Cheng S.Y., Liu Z.L. Fabrication of Cu2ZnSn(S,Se)4 (CZTSSe) absorber films based on solid-phase synthesis and blade coating processes. Appl. Surf. Sci., 2016, 368, 8.

[22]

Chen W.X., Chen H.P., Zhu H.Z., Gao Q.Q., Luo J., Wang Y., Zhang S., Zhang K., Wang C.G., Xiong Y.J., Wu Y.F., Zheng X.S., Chu W.S., Song L., Wu Z.Y. Solvothermal synthesis of ternary Cu2MoS4 nanosheets: structural characterization at the atomic level. Small, 2014, 10(22): 4637.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/