Modeling study on the flow patterns of gas–liquid flow for fast decarburization during the RH process

Yi-hong Li , Yan-ping Bao , Rui Wang , Li-feng Ma , Jian-sheng Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (2) : 153 -163.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (2) : 153 -163. DOI: 10.1007/s12613-018-1558-y
Article

Modeling study on the flow patterns of gas–liquid flow for fast decarburization during the RH process

Author information +
History +
PDF

Abstract

A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern (BP), transition pattern (TP), and wave pattern (WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.

Keywords

modeling study / flow pattern / vacuum chamber / residence time / decarburization / RH process

Cite this article

Download citation ▾
Yi-hong Li, Yan-ping Bao, Rui Wang, Li-feng Ma, Jian-sheng Liu. Modeling study on the flow patterns of gas–liquid flow for fast decarburization during the RH process. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(2): 153-163 DOI:10.1007/s12613-018-1558-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fukuda Y., Onoyama S., Imai T., Mukawa S., Sado T., Fukiage K., Kunitake O., Takagi N., Matsumoto H. Development of high-grade steel manufacturing technology for mass production at Nagoya works. Nippon Steel Tech. Rep., 2013, 104, 90.

[2]

Li Y.H., Bao Y.P., Wang R., Wang M., Huang Q.X., Li Y.G. Modeling on liquid level and bubble behavior in vacuum chamber of RH process. J. Iron Steel Res. Int., 2016, 23(4): 305.

[3]

Li Y.H., Bao Y.P., Wang M., Wang R., Tang D.C. Influence of process conditions during Ruhrstahl-Hereaeus refining process and effect of vacuum degassing on carbon removal to ultra-low levels. Ironmaking Steelmaking, 2015, 42(5): 366.

[4]

Geng D.Q., Zheng J.X., Wang K., Wang P., Liang R.Q., Liu H.T., Lei H., He J.C. Simulation on decarburization and inclusion removal process in the Ruhrstahl–Heraeus (RH) process with ladle bottom blowing. Metall. Mater. Trans. B, 2015, 46(3): 1484.

[5]

Luo L.J., Yuan J.Q., Xie P., Sun J.W., Guo W. Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with sieve plates. Chem. Eng. Res. Des., 2013, 91(12): 2377.

[6]

Xu T.T., Jiang X.D., Yang N., Zhu J.H. CFD simulation of internal-loop airlift reactor using EMMS drag model. Particuology, 2015, 19(2): 124.

[7]

Kamata C., Ito K. Cold model experiments on the application of gas lift pump to the transportation of molten metal. ISIJ Int., 1995, 35(7): 859.

[8]

Yue J., Chen G.W., Yuan Q., Luo L.G., Gonthier Y. Hydrodynamics and mass transfer characteristics in gas–liquid flow through a rectangular microchannel. Chem. Eng. Sci., 2007, 62(7): 2096.

[9]

Mondal M.K., Maruoka N., Kitamura S., Gupta G.S., Nogami H., Shibata H. Study of fluid flow and mixing behavior of a vacuum degasser. Trans. Indian Inst. Met., 2012, 65(3): 321.

[10]

Zhang L.F., Li F. Investigation on the fluid flow and mixing phenomena in a Ruhrstahl-Heraeus (RH) steel degasser using physical modeling. JOM, 2014, 66(7): 1227.

[11]

Zhu B.H., Liu Q.C., Zhao D., Ren S., Xu M.R., Yang B.C., Hu B. Effect of nozzle blockage on circulation flow rate in up-snorkel during the RH degasser process. Steel Res. Int., 2016, 87(2): 136.

[12]

Mukherjee D., Shukla A.K., Senk D.G. Cold model-based investigations to study the effects of operational and nonoperational parameters on the Ruhrstahl–Heraeus degassing process. Metall. Mater. Trans. B, 2017, 48(2): 763.

[13]

Kato Y., Nakato H., FJii T., Ohmiya S., Takatori S. Fluid flow in ladle and its effect on decarburization rate in RH degasser. ISIJ Int., 1993, 33(10): 1088.

[14]

Rui Q.X., Jiang F., Ma Z.M., You Z.M., Cheng G.G., Zhan J. Effect of elliptical snorkel on the decarburization rate in single snorkel refining furnace. Steel Res. Int., 2013, 84(2): 192.

[15]

Guo D., Irons G.A. Modeling of gas–liquid reactions in ladle metallurgy: Part I. Physical modelling. Metall. Mater. Trans. B, 2000, 31(6): 1447.

[16]

Neves L., de Oliveria H.P.O., Tavares R.P. Evaluation of the effects of gas in the vacuum chamber of a RH degasser on melt circulation and decarburization rates. ISIJ Int., 2009, 49(8): 1141.

[17]

Inada S., Watanabe T. A study of the effects of CO2 absorption in the NaOH solution–CO2 gas jet model. Tetsu-to-Hagané, 1976, 62(7): 807.

[18]

Kim S.H., Fruehan R.J. Physical modeling of liquid/ liquid mass transfer in a gas stirred ladle. Metall. Trans. B, 1987, 18(2): 381.

[19]

Luo L.J., Liu F.N., Xu Y.Y., Yuan J.Q. Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with different spargers. Chem. Eng. J., 2011, 175(1): 494.

[20]

Guo Y.X., Rathor M.N., Ti H.C. Hydrodynamics and mass transfer studies in a novel external-loop airlift reactor. Chem. Eng. J., 1997, 67(3): 205.

[21]

Lin L., Bao Y.P., Yue F., Zhang L.Q., Ou H.L. Physical model of fluid flow characteristics in RH-TOP vacuum refining process. Int. J. Miner. Metall. Mater., 2012, 19(6): 483.

[22]

Ahrenhold F., Pluschkell W. Circulation rate of liquid steel in RH degassers. Steel Res., 1998, 69(2): 54.

[23]

Ai X.G., Bao Y.P., Jiang W., Liu J.H., Li P.H., Li T.Q. Periodic flow characteristics during RH vacuum circulation refining. Int. J. Miner. Metall. Mater., 2010, 17(1): 17.

[24]

Wei J.H., Yu N.W., Fan Y.Y., Yang S.L., Ma J.C., Zhu D.P. Study on flow and mixing characteristics of molten steel in RH and RH-KTB refining processes. J. Shanghai Univ., 2002, 6(2): 167.

[25]

Bendjaballah N., Dhaouadi H., Poncin S., Midoux N., Hornut J.M., Wild G. Hydrodynamics and flow regimes in external loop airlift reactors. Chem. Eng. Sci., 1999, 54(21): 5211.

[26]

Siegel M.H., Merchuk J.C., Schugerl K. Air-lift reactor analysis: Interrelationships between riser, downcomer, and gas–liquid separator behavior, including gas recirculation effects. AIChE J., 1986, 32(10): 1585.

[27]

Merchuk J.C., Ladwa N., Cameron A., Bumler M., Pickett A. Concentric-tube airlift reactors: effect of geometrical design on performance. AIChE J., 1994, 40(7): 1105.

[28]

Huang X.H., Li J.Z. Principles of Steel Metallurgy, 2013, Beijing, Metallurgical Industry Press 497.

[29]

Kitamura S.Y., Aoki H., Miyamoto K.I., Furuta H., Yamashita K., Yonezawa K. Development of a novel degassing process consisting with single large immersion snorkel and a bottom bubbling ladle. ISIJ Int., 2000, 40(5): 455.

[30]

Maruoka N., Lazuardi F., Nogami H., Gupta G.S., Kitamura S.Y. Effect of bottom bubbling conditions on surface reaction rate in oxygen–water system. ISIJ Int., 2010, 50(1): 89.

[31]

Takahashi M., Matsumoto H., Saito T. The mechanism of decarburization in RH degasser. ISIJ Int., 1995, 35(12): 1452.

[32]

Kitamura T., Miyamoto K., Tsujno R., Mizoguch S., Kato K. Mathematical model for nitrogen desorption and decarburization reaction in vacuum degasser. ISIJ Int., 1996, 36(4): 395.

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/