A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite

Yi-min Zhang , Li-na Wang , De-sheng Chen , Wei-jing Wang , Ya-hui Liu , Hong-xin Zhao , Tao Qi

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (2) : 131 -144.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (2) : 131 -144. DOI: 10.1007/s12613-018-1556-0
Article

A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite

Author information +
History +
PDF

Abstract

An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.

Keywords

recovery / vanadium / titanomagnetite / direct reduction / sodium oxidation / smelting separation / water leaching

Cite this article

Download citation ▾
Yi-min Zhang, Li-na Wang, De-sheng Chen, Wei-jing Wang, Ya-hui Liu, Hong-xin Zhao, Tao Qi. A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(2): 131-144 DOI:10.1007/s12613-018-1556-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li C., Liang B., Guo L.H., Wu Z.B. Effect of mechanical activation on the dissolution of Panzhihua ilmenite. Miner. Eng., 2006, 19(14): 1430.

[2]

Liu X.H., Gai G.S., Yang Y.F., Sui Z.T., Li L., Fu J.X. Kinetics of the leaching of TiO2 from Ti-bearing blast furnace slag. J. China Univ. Min. Technol., 2008, 18(2): 275.

[3]

Wang J.L. Development and utilization for the vanadium-bearing titanomagnetite in oversea areas. Vanadium Titanium, 1993, 5, 1.

[4]

Wang Z.H. Multipurpose utilization of vanadium-bearing titanomagnetite and vanadium and titanium industry. Vanadium Titanium, 1993, 4, 1.

[5]

Zhou L.H., Wang J., Gou S.Y., Chen L.Y., Li Z.R. Development of utilization of vanadic titanomagnetite. Appl. Mech. Mater., 2012, 184-185, 949.

[6]

Fu W.G., Wen Y.C., Xie H.E. Development of intensified technologies of vanadium-bearing titanomagnetite smelting. J. Iron Steel Res. Int., 2011, 18(4): 7.

[7]

Zhang L., Zhang L.N., Wang M.Y., Li G.Q., Sui Z.T. Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition. Miner. Eng., 2007, 20(7): 684.

[8]

Liu B., Du H., Wang S.N., Zhang Y., Zheng S.L., Li L.J., Chen D.H. A novel method to extract vanadium and chromium from vanadium slag using molten NaOH–NaNO3 binary system. AICHE J., 2013, 59(2): 541.

[9]

Lou T.P., Li Y.H., Ma J.W., Xia Y.H., Sui Z.T. The isothermal growth of perovskite phase in the blast furnace slag bearing titania. Acta Metall. Sin., 1999, 35(8): 834.

[10]

Hu K.J., Xi G., Yao J., Xi X. Status quo of manufacturing techniques of titanium slag in the world. World Nonferrous Met., 2006, 12, 26.

[11]

Xue X. Research on direct reduction of vanadic titanomagnetite. Iron Steel Vanadium Titanium, 2007, 28(3): 37.

[12]

Deng J., Xue X., Liu G.G. Current situation and development of comprehensive utilization of vanadium-bearing titanomagnetite at PANGANG. J. Mater. Metall., 2007, 6(2): 83.

[13]

Moskalyk R.R., Alfantazi A.M. Processing of vanadium: a review. Miner. Eng., 2003, 16(9): 793.

[14]

Zhao L.S., Wang L.N., Qi T., Chen D.S., Zhao H.X., Liu Y.H. A novel method to extract iron, titanium, vanadium, and chromium from high-chromium vanadium-bearing titanomagnetite concentrates. Hydrometallurgy, 2014, 149, 106.

[15]

Zhang Y.M., Yi L.Y., Wang L.N., Chen D.S., Zhao H.X., Qi T. A novel process for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: sodium modification–direct reduction coupled process. Int. J. Miner. Metall. Mater., 2016, 24(5): 504.

[16]

Ma B.Z., Wang C.Y., Yang W.J., Yin F., Chen Y.Q. Screening and reduction roasting of limonitic laterite and ammonia–carbonate leaching of nickel–cobalt to produce a high-grade iron concentrate. Miner. Eng., 2013, 50-51(9): 106.

[17]

Klug H.P., Alexander L.E. X-Ray Diffraction Procedures: for Polycrystalline and Amorphous Materials, 1974, New York, Wiley.

[18]

Tang H.H., Sun W., Hu Y.H., Han H.S. Comprehensive recovery of the components of ferritungstite base on reductive roasting with mixed sodium salts, water leaching and magnetic separation. Miner. Eng., 2016, 86, 34.

[19]

Lahiri A., Jha A. Kinetics and reaction mechanism of soda ash roasting of ilmenite ore for the extraction of titanium dioxide. Metall. Mater. Trans. B, 2007, 38(6): 939.

[20]

Tsutsumi K., Nagasaka T., Hino M. Surface roughness of solidified mold flux in continuous casting process. ISIJ Int., 1999, 39(11): 1150.

[21]

Han H.L., Duan D.P., Chen S.M., Yuan P. Mechanism and influencing factors of iron nuggets forming in rotary hearth furnace process at lower temperature. Metall. Mater. Trans. B, 2015, 46(5): 2208.

[22]

Lu J., Liu S.J., Ju S.G., Du W.G., Feng P., Song Y. The effect of sodium sulphate on the hydrogen reduction process of nickel laterite ore. Miner. Eng., 2013, 49(8): 154.

[23]

Yu W., Sun T.C., Kou J., Wei Y.X., Xu C.Y., Liu Z.Z. The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus olitic hematite-coal mixed pellets. ISIJ Int., 2013, 53(3): 427.

[24]

Imideev V.A., Aleksandrov P.V., Medvedev A.S., Bazhenova O.V., Khanapieva A.R. Nickel sulfide concentrate processing using low-temperature roasting with sodium chloride. Metallurgist, 2014, 58(5-6): 353.

[25]

Guo Q., Qu J.K., Han B.B., Wei G.Y., Zhang P.Y., Qi T. Dechromization and dealumination kinetics in process of Na2CO3-roasting pretreatment of laterite ores. Trans. Nonferrous Met. Soc. China, 2014, 24(12): 3979.

[26]

Alizade Z., Khalilova K.H. Vanadium oxidation during reducing roasting of titanomagnetite concentrates by natural gas with sodium carbonate present. Russ. J. Appl. Chem., 1995, 68(6): 785.

[27]

Huang X.G. Iron and Steel Metallurgy Principle, 2011, Beijing, Metallurgical Industry Press.

[28]

Mukai K. Interfacial phenomena, metals processing and properties. Fundam. Metall., 2005, 2, 237.

[29]

Xue Z.L., Yang D., Zhou L.G., Li Y.Y. Effects of technical factors on iron nuggets separated from slag by Wcomet process. J. Wuhan Univ. Sci. Technol., 2009, 32(1): 1.

[30]

Ishizaki K., Nagata K., Hayashi T. Production of pig iron from magnetite ore-coal composite pellets by microwave heating. ISIJ Int., 2006, 46(10): 1403.

[31]

Ono H., Tanizawa K., Usui T. Rate of iron carburization by carbon in slags through carbon/slag and slag/metal reactions at 1723 K. ISIJ Int., 2011, 51(8): 1274.

[32]

Ohno K.I., Babich A., Mitsue J., Maeda T., Senk D., Gudenau H.W., Shimizu M. Effects of charcoal carbon crystallinity and ash content on carbon dissolution in molten iron and carburization reaction in iron-charcoal composite. ISIJ Int., 2012, 52(8): 1482.

[33]

Villars P., Prince A., Okamoto H. Handbook of Ternary Alloy Phase Diagrams, 1995, Materials Park, OH, ASM International.

[34]

Cham S.T., Khanna R., Sahajwalla V., Sakurovs R., French D. Influence of mineral matter on carbon dissolution from metallurgical coke into molten iron: interfacial phenomena. ISIJ Int., 2009, 49(12): 1860.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/