Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy

Xiang Zeng , Jie Teng , Jin-gang Yu , Ao-shuang Tan , Ding-fa Fu , Hui Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (1) : 102 -109.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2018, Vol. 25 ›› Issue (1) : 102 -109. DOI: 10.1007/s12613-018-1552-4
Article

Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy

Author information +
History +
PDF

Abstract

Graphene-reinforced aluminum (Al) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al composite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphologies, chemical compositions, and microstructures of the graphene and the graphene/Al composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.

Keywords

graphene / metal matrix composites / solution mixing / powder metallurgy / mechanical properties

Cite this article

Download citation ▾
Xiang Zeng, Jie Teng, Jin-gang Yu, Ao-shuang Tan, Ding-fa Fu, Hui Zhang. Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(1): 102-109 DOI:10.1007/s12613-018-1552-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y., Zhao Y.H., Ortalan V., Liu W., Zhang Z.H., Vogt R.G., Browning N.D., Lavernia E.J., Schoenung J.M. Investigation of aluminum-based nanocomposites with ultra-high strength. Mater. Sci. Eng. A, 2009, 527(1-2): 305.

[2]

El-Kady O., Fathy A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater. Des., 2014, 54, 348.

[3]

Sornakumar T., Kathiresan M. Machining studies of die cast aluminum alloy–silicon carbide composites. Int. J. Miner. Metall. Mater., 2010, 17(5): 648.

[4]

Atrian A., Majzoobi G.H., Enayati M.H., Bakhtiari H. Mechanical and microstructural characterization of Al7075/SiC nanocomposites fabricated by dynamic compaction. Int. J. Miner. Metall. Mater., 2014, 21(3): 295.

[5]

Valibeygloo N., Khosroshahi R.A., Mousavian R.T. Microstructural and mechanical properties of Al–4.5wt% Cu reinforced with alumina nanocomposites by stir casting method. Int. J. Miner. Metall. Mater., 2013, 20(10): 978.

[6]

Karbalaei Akbari M., Baharvandi H.R., Mirzaee O. Fabrication of nano-sized Al2O3 reinforced casting aluminum composite focusing on preparation process of reinforcement powders and evaluation of its properties. Composites Part B, 2013, 55, 426.

[7]

Jeyasimman D., Sivasankaran S., Sivaprasad K., Narayanasamy R., Kambali R.S. An investigation of the synthesis, consolidation and mechanical behaviour of Al 6061 nanocomposites reinforced by TiC via mechanical alloying. Mater. Des., 2014, 57, 394.

[8]

Volder M.F.L.D., H. Tawfick S., Baughman R.H., Hart A.J. Carbon nanotubes: present and future commercial applications. Science, 2013, 339, 535.

[9]

Teng J., Zeng X., Xu X., Yu J.G. Assembly of a novel porous 3D^graphene oxide-starch architecture by a facile hydrothermal method and its adsorption properties toward metal ions. Mater. Lett., 2018, 214, 31.

[10]

Kim W.J., Lee S.H. High-temperature deformation behavior of carbon nanotube (CNT)-reinforced aluminum composites and prediction of their high-temperature strength. Composites Part A, 2014, 67, 308.

[11]

Chen B., Li S.F., Imai H., Jia L., Umeda J., Takahashi M., Kondoh K. Carbon nanotube induced microstructural characteristics in powder metallurgy Al matrix composites and their effects on mechanical and conductive properties. J. Alloys Compd., 2015, 651, 608.

[12]

Sharma M., Sharma V. Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite. Int. J. Miner. Metall. Mater., 2016, 23(2): 222.

[13]

Kwon H., Estili M., Takagi K., Miyazaki T., Kawasaki A. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon, 2009, 47(3): 570.

[14]

Li J.L., Xiong Y.C., Wang X.D., Yan S.J., Yang C., He W.W., Chen J.Z., Wang S.Q., Zhang X.Y., Dai S.L. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater. Sci. Eng. A, 2015, 626, 400.

[15]

Gao X., Yue H.Y., Guo E., Zhang H., Lin X.Y., Yao L.H., Wang B. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater. Des., 2016, 94, 54.

[16]

Bartolucci S.F., Paras J., Rafiee M.A., Rafiee J., Lee S., Kapoor D., Koratkar N. Graphene–aluminum nanocomposites. Mater. Sci. Eng. A, 2011, 528(27): 7933.

[17]

Wang J.Y., Li Z.Q., Fan G.L., Pan H.H., Chen Z.X., Zhang D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater., 2012, 66(8): 594.

[18]

Shin S.E., Bae D.H. Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Composites Part A, 2015, 78, 42.

[19]

Liu J.H., Khan U., Coleman J., Fernandez B., Rodriguez P., Naher S., Brabazon D. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Mater. Des., 2016, 94, 87.

[20]

Hwang J., Yoon T., Jin S.H., Lee J., Kim T.S., Hong S.H., Jeon S. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater., 2013, 25(46): 6724.

[21]

Tian W.M., Li S.M., Wang B., Chen X., Liu J.H., Yu M. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int. J. Miner. Metall. Mater., 2016, 23(6): 723.

[22]

Wang Z.A., Zhang X.M., Wu X.W., Yu J.G., Jiang X.Y., Wu Z.L., Hao X. Soluble starch functionalized graphene oxide as an efficient adsorbent for aqueous removal of Cd (II): The adsorption thermodynamic, kinetics and isotherms. J. Sol-Gel Sci. Technol., 2017, 82(2): 440.

[23]

Shin S.E., Choi H.J., Shin J.H., Bae D.H. Strengthening behavior of few-layered graphene/aluminum composites. Carbon, 2015, 82, 143.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/